首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
M. tuberculosis is adapted to remain active in the extreme environmental condition due to the presence of atypical sigma factors commonly called extra cytoplasmic function (ECF) sigma factors. Among the 13 sigma factors of M. tuberculosis, 10 are regarded as the ECF sigma factor that exerts their attributes in various stress response. Therefore it is of interest to describe the structural prediction of one of the ECF sigma factors, sigma H (SigH), involved in oxidative and heat stress having interaction with the β׳ subunit of M. tuberculosis. RNA polymerase (Mtb-RNAP). The model of Mtb-SigH was build using the commercial package of Discovery Studio version 2.5 from Accelerys (San Diego, CA, USA) containing the inbuilt MODELER module and that of β׳ subunit of Mtb-RNAP using Phyre Server. Further, the protein models were docked using the fully automated web tool ClusPro (cluspro.bu.edu/login.php). Mtb-SigH is a triple helical structure having a putative DNA-binding site and the β׳ subunit of MtbRNAP consists of 18-beta sheets and 22 helices. The SigH-Mtb-RNAP β׳ interaction studies showed that Arg26, Gln19 andAsp18, residues of SigH protein are involved in binding with Arg137, Gln140, Arg152, Asn133 and Asp144 of β׳ subunit of Mtb-RNAP. The predicted model helps to explore the molecular mechanism in the control of gene regulation with a novel unique target for potential new generation inhibitor.  相似文献   

4.
A variety of mechanisms are used to signal extracytoplasmic conditions to the cytoplasm. These mechanisms activate extracytoplasmic function (ECF) sigma factors which recruit RNA-polymerase to specific genes in order to express appropriate proteins in response to the changing environment. The two best understood ECF signaling pathways regulate σE-mediated expression of periplasmic stress response genes in Escherichia coli and FecI-mediated expression of iron-citrate transport genes in E. coli. Homologues from other Gram-negative bacteria suggest that these two signaling mechanisms and variations on these mechanisms may be the general schemes by which ECF sigma factors are regulated in Gram-negative bacteria.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Cell‐surface signalling (CSS) enables Gram‐negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti‐sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP‐mediated proteolysis of the anti‐sigma factors is key to σECF activation. Using the Pseudomonas aeruginosa FoxR anti‐sigma factor, we show here that RseP is responsible for the generation of an N‐terminal tail that likely contains pro‐sigma activity. Furthermore, it has been reported previously that this anti‐sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti‐sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti‐sigma factors.  相似文献   

14.
15.
16.
17.
Extracytoplasmic function (ECF) sigma factors are members of cell-surface signaling systems, abundant in the opportunistic pathogen Pseudomonas aeruginosa. Twenty genes coding for ECF sigma factors are present in P. aeruginosa sequenced genomes, most of them being part of TonB systems related to iron uptake. In this work, poorly characterized sigma factors were overexpressed in strain PA14, in an attempt to understand their role in the bacterium´s physiology. Cultures overexpressing SigX displayed a biphasic growth curve, reaching stationary phase earlier than the control strain, followed by subsequent growth resumption. During the first stationary phase, most cells swell and die, but the remaining cells return to the wild type morphology and proceed to a second exponential growth. This is not due to compensatory mutations, since cells recovered from late time points and diluted into fresh medium repeated this behavior. Swollen cells have a more fluid membrane and contain higher amounts of shorter chain fatty acids. A proteomic analysis was performed to identify differentially expressed proteins due to overexpression of sigX, revealing the induction of several fatty acid synthesis (FAS) enzymes. Using qRT-PCR, we showed that at least one isoform from each of the FAS pathway enzymes were upregulated at the mRNA level in the SigX overexpressing strain thus pointing to a role for this ECF sigma factor in the FAS regulation in P. aeruginosa.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号