首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rstD, but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rstD mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time. genesis 47:492–504, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Programmed cell death (PCD) is a highly conserved process that occurs during development and in response to adverse conditions. In Drosophila, most PCDs require the genes within the H99 deficiency, the adaptor molecule Ark, and caspases. Here we investigate 10 cell death genes for their potential roles in two distinct types of PCD that occur in oogenesis: developmental nurse cell PCD and starvation-induced PCD. Most of the genes investigated were found to have little effect on late stage developmental PCD in oogenesis, although ark mutants showed a partial inhibition. Mid-stage starvation-induced germline PCD was found to be independent of the upstream activators and ark although it requires caspases, suggesting an apoptosome-independent mechanism of caspase activation in mid-oogenesis. These results indicate that novel pathways must control PCD in the ovary.  相似文献   

5.
6.
Autophagy has been implicated in both cell survival and programmed cell death (PCD), and this may explain the apparently complex role of this catabolic process in tumourigenesis. Our previous studies have shown that caspases have little influence on Drosophila larval midgut PCD, whereas inhibition of autophagy severely delays midgut removal. To assess upstream signals that regulate autophagy and larval midgut degradation, we have examined the requirement of growth signalling pathways. Inhibition of the class I phosphoinositide-3-kinase (PI3K) pathway prevents midgut growth, whereas ectopic PI3K and Ras signalling results in larger cells with decreased autophagy and delayed midgut degradation. Furthermore, premature induction of autophagy is sufficient to induce early midgut degradation. These data indicate that autophagy and the growth regulatory pathways have an important relationship during midgut PCD. Despite the roles of autophagy in both survival and death, our findings suggest that autophagy induction occurs in response to similar signals in both scenarios.  相似文献   

7.
Programmed cell death during endosperm development   总被引:32,自引:0,他引:32  
The endosperm of cereals functions as a storage tissue in which the majority of starch and seed storage proteins are synthesized. During its development, cereal endosperm initiates a cell death program that eventually affects the entire tissue with the exception of the outermost cells, which differentiate into the aleurone layer and remain living in the mature seed. To date, the cell death program has been described for maize and wheat endosperm, which exhibits common and unique elements for each species. The progression of endosperm programmed cell death (PCD) in both species is accompanied by an increase in nuclease activity and the internucleosomal degradation of nuclear DNA, hallmarks of apoptosis in animals. Moreover, ethylene and abscisic acid are key to mediating PCD in cereal endosperm. The progression of the cell death program in developing maize endosperm follows a highly organized pattern whereas in wheat endosperm, PCD initiates stochastically. Although the essential characteristics of cereal endosperm PCD are now known, the molecular mechanisms responsible for its execution remain to be identified.  相似文献   

8.
The growing number of studies suggested that inhibition of autophagy enhances the efficacy of Akt kinase inhibitors in cancer therapy. Here, we provide evidence that ML-9, a widely used inhibitor of Akt kinase, myosin light-chain kinase (MLCK) and stromal interaction molecule 1 (STIM1), represents the ‘two-in-one'' compound that stimulates autophagosome formation (by downregulating Akt/mammalian target of rapamycin (mTOR) pathway) and inhibits their degradation (by acting like a lysosomotropic agent and increasing lysosomal pH). We show that ML-9 as a monotherapy effectively induces prostate cancer cell death associated with the accumulation of autophagic vacuoles. Further, ML-9 enhances the anticancer activity of docetaxel, suggesting its potential application as an adjuvant to existing anticancer chemotherapy. Altogether, our results revealed the complex effect of ML-9 on autophagy and indentified ML-9 as an attractive tool for targeting autophagy in cancer therapy through dual inhibition of both the Akt pathway and the autophagy.  相似文献   

9.
10.
Ultrastructural studies have shown that the formation of pigment glands in Gossypium hirsutum L. leaves is a lysigenous process, originating from a cluster of cells in the ground meristem. Various techniques were used here to investigate whether programmed cell death (PCD) plays a critical role in this developmental process. Nuclei of internal cells in the pigment gland‐forming tissue were TUNEL‐positive and DAPI‐negative, suggesting that DNA cleavage is an early event and complete DNA degradation is a late event. Smeared bands and a lack of laddering after gel electrophoresis indicate that DNA cleavage is random. Ultrastructurally, secretory cells in the pigment glands become distorted, nuclei are densely stained, and chromosomes become condensed until completely degraded at late stages. Vacuoles with electron‐dense bodies and membrane‐bound autophagosomes are seen in both secretory and sheath cells, suggesting that autophagy plays a key role in PCD during cytoplasm degradation. Buckling of cell walls, seen at early stages, later leads to a complete breakdown of the walls. Together, these results suggest that PCD plays a critical role in the lysigenous development of pigment glands in G. hirsutum leaves.  相似文献   

11.
Programmed cell death in plants: distinguishing between different modes   总被引:1,自引:0,他引:1  
Programmed cell death (PCD) in plants is a crucial componentof development and defence mechanisms. In animals, differenttypes of cell death (apoptosis, autophagy, and necrosis) havebeen distinguished morphologically and discussed in these morphologicalterms. PCD is largely used to describe the processes of apoptosisand autophagy (although some use PCD and apoptosis interchangeably)while necrosis is generally described as a chaotic and uncontrolledmode of death. In plants, the term PCD is widely used to describemost instances of death observed. At present, there is a vastarray of plant cell culture models and developmental systemsbeing studied by different research groups and it is clear fromwhat is described in this mass of literature that, as with animals,there does not appear to be just one type of PCD in plants.It is fundamentally important to be able to distinguish betweendifferent types of cell death for several reasons. For example,it is clear that, in cell culture systems, the window of timein which ‘PCD’ is studied by different groups varieshugely and this can have profound effects on the interpretationof data and complicates attempts to compare different researcher'sdata. In addition, different types of PCD will probably havedifferent regulators and modes of death. For this reason, inplant cell cultures an apoptotic-like PCD (AL-PCD) has beenidentified that is fairly rapid and results in a distinct corpsemorphology which is visible 4–6 h after release of cytochromec and other apoptogenic proteins. This type of morphology, distinctfrom autophagy and from necrosis, has also been observed inexamples of plant development. In this review, our model systemand how it is used to distinguish specifically between AL-PCDand necrosis will be discussed. The different types of PCD observedin plants will also be discussed and the importance of distinguishingbetween different forms of cell death will be highlighted. Key words: Apoptosis, apoptosis-like programmed cell death (AL-PCD), Arabidopsis, autophagy, mitochondria, necrosis, programmed cell death (PCD) Received 5 June 2007; Revised 13 September 2007 Accepted 20 September 2007  相似文献   

12.
Ubiquitin/proteasome‐mediated degradation of eukaryotic proteins is critically implicated in a number of signalling pathways and cellular processes. To specifically impair proteasome activities, in vitro developing Drosophila melanogaster egg chambers were exposed to the MG132 or epoxomicin proteasome inhibitors, while a GAL4/UAS binary genetic system was employed to generate double transgenic flies overexpressing β2 and β6 conditional mutant proteasome subunits in a cell type‐specific manner. MG132 and epoxomicin administration resulted in severe deregulation of in vitro developing egg chambers, which was tightly associated with precocious induction of nurse cell‐specific apoptotic and autophagic death programmes, featured by actin cytoskeleton disorganization, nuclear chromatin condensation, DRICE caspase activation and autophagosome accumulation. In vivo targeted overexpression of β2 and β6 conditional mutants, specifically in the nurse cell compartment, led to a notable up‐regulation of sporadic apoptosis potency during early and mid‐oogenesis ‘checkpoints’, thus reasonably justifying the observed reduction in eclosion efficiency. Furthermore, in response to the intracellular abundance of β2 and β6 conditional mutant forms, specifically in numerous tissues of third instar larval stage, the developmental course was arrested, and lethal phenotypes were obtained at this particular embryonic period, with the double transgenic heterozygote embryos being unable to further proceed to complete maturation to adult flies. Our data demonstrate that physiological proteasome function is required to ensure normal oogenesis and embryogenesis in D. melanogaster, since targeted and cell type‐dependent proteasome inactivation initiates developmentally deregulated apoptotic and autophagic mechanisms.  相似文献   

13.
Autophagy is critical for homeostasis and cell survival during stress, but can also lead to cell death, a little understood process that has been shown to contribute to developmental cell death in lower model organisms, and to human cancer cell death. We recently reported1 Dasari SK, Bialik S, Levin-Zaidman S, Levin-Salomon V, Merrill AH, Jr., Futerman AH, Kimchi A. Signalome-wide rnai screen identifies gba1 as a positive mediator of autophagic cell death. Cell Death Differ. 2017;24(7):1288-1302. https://doi.org/10.1038/cdd.2017.80. PMID:28574511[Crossref], [PubMed], [Web of Science ®] [Google Scholar] on our thorough molecular and morphologic characterization of an autophagic cell death system involving resveratrol treatment of lung carcinoma cells. To gain mechanistic insight into this death program, we performed a signalome-wide RNAi screen for genes whose functions are necessary for resveratrol-induced death. The screen identified GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, as an important mediator of autophagic cell death. Here we further show the physiological relevance of GBA1 to developmental cell death in midgut regression during Drosophila metamorphosis. We observed a delay in midgut cell death in two independent Gba1a RNAi lines, indicating the critical importance of Gba1a for midgut development. Interestingly, loss-of-function GBA1 mutations lead to Gaucher Disease and are a significant risk factor for Parkinson Disease, which have been associated with defective autophagy. Thus GBA1 is a conserved element critical for maintaining proper levels of autophagy, with high levels leading to autophagic cell death.  相似文献   

14.
In the present study, we describe the features of programmed cell death of ovarian follicle cells, occurring during the late developmental stages of oogenesis in the olive fruit fly, Bactrocera oleae and the medfly, Ceratitis capitata. During stage 14, the follicle cells contain autophagic vacuoles, and they do not exhibit caspase activity in all parts of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high- but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. These data argue for the presence of an autophagy-mediated cell death program in the ovarian follicle cell layer in both species. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. We strongly believe that during the termination of the above Dipteran oogenesis, an efficient mechanism of absorption of the degenerated follicle cells is selectively activated, in order to prevent the blockage of the ovarioles and thus robustly support the physiological completion of the ovulation process.  相似文献   

15.
A large number of cells die via programmed cell death during the normal development of the Drosophila optic lobe. In this study, we report the precise spatial and temporal pattern of cell death in this organ. Cell death in the developing optic lobe occurs in two distinct phases. The first phase extends from the start of metamorphosis to the mid-pupal stage. During this phase, a large number of cells die in the optic lobe as a whole, with a peak of cell death at an early pupal stage in the lamina and medulla cortices and the region of the T2/T3/C neurons, and a smaller number of dead cells observed in the lobula plate cortex. The second phase extends from the mid-pupal stage to eclosion. Throughout this period, a small number of dying cells can be observed, with a small peak at a late pupal stage. Most of the dying cells are neurons. During the first phase, dying cells are distributed in specific patterns in cortices. The lamina cortex contains two distinct clusters of dying cells; the medulla cortex, four clusters; the lobula plate cortex, one cluster; and the region of the T2/T3/C neurons, one cluster. Many of the clusters maintain their distinct positions in the optic lobe but others extend the region they cover during development. The presence of distinct clusters of dying cells at different phases suggests that distinct mechanisms control cell death during different stages of optic lobe development in Drosophila.  相似文献   

16.
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.  相似文献   

17.
果蝇蜕皮激素诱导程序性细胞死亡的遗传调控因子   总被引:4,自引:2,他引:4  
近年来关于果蝇程序性细胞死亡(programmed cell death, PCD)的研究结果表明,在果蝇的变态发育过程中,蜕皮激素与受体结合后诱导转录因子的表达。这些转录因子作为程序性细胞死亡调控网络中的初、次级应答信号,激活凋亡诱导因子Reaper、Hid和Grim的表达。Reaper、Hid和Grim进而阻止凋亡蛋白抑制因子的活性,从而启动半胱氨酸蛋白酶caspase途径,引起细胞凋亡(apoptosis)。该文综述了蜕皮激素诱导的果蝇程序性细胞死亡中各遗传调控因子之间的关系。  相似文献   

18.
李兆英  余红梅  孙艳  孙婧 《昆虫学报》2016,(10):1079-1085
【目的】咽下腺(hypopharyngeal gland)是蜜蜂重要的外分泌腺,是工蜂合成和分泌蜂王浆的主要腺体。本研究的目的在于了解中华蜜蜂Apis cerana cerana工蜂咽下腺的胚后发育特点。【方法】通过组织形态学、Brd U免疫组织化学和TUNEL细胞凋亡检测等技术,对中华蜜蜂工蜂咽下腺的胚后发育过程及组织结构特点进行了比较研究。【结果】中华蜜蜂工蜂的咽下腺起源自预蛹阶段口器内壁的陷入,细胞分裂活动的高峰期集中在蛹发育的前3 d,随后分裂细胞数减少,并一直持续到蛹发育的第7天左右结束;分泌腺泡的出现大约在蛹发育的第5天。到蛹发育的末期,咽下腺已基本形成,但是没有发育完全;哺育蜂的咽下腺高度发育,分泌活动旺盛;采集蜂的咽下腺中有许多分泌细胞凋亡。【结论】本研究揭示了中蜂工蜂咽下腺胚后发育过程中细胞增殖和凋亡的模式,为昆虫咽下腺的发育和功能研究提供了一定的理论依据。  相似文献   

19.
20.
Background information. PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). Results. SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labelling)‐positive cells both in inactive and feeding animals. The DA‐induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto‐c (cytochrome c) translocation into the cytosol and methyl‐β‐cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto‐c was under the control of Bcl‐2 and Bad. DA also increased the active caspase‐3 in gland cells while D2 receptor antagonists and TEA attenuated it. Conclusion. Our results provide evidence for a type of transmitter‐mediated pathway that regulates the PCD of secretory cells in a mitochondrial‐caspase‐dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto‐c, ceramide, Bcl‐2 proteins and caspase‐3, but not caspase‐8, was demonstrated in cells involved in the DA‐induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号