首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoglobulin class switch involves a unique recombination event that takes place at the switch (S) region which is located 5' to each constant region (C) gene of the heavy (H) chain. For example, differentiation of the B lymphocyte from a mu-chain producer to an epsilon-chain producer is mediated by the switch recombination between the S mu and S epsilon regions. In order to elucidate the molecular mechanism for the switch recombination, we have determined nucleotide sequences surrounding the class switch recombination sites of the C epsilon and C gamma 3 genes and those in the 5' flanking regions of the C gamma 2a and C delta genes. The results indicate that the 5' flanking regions of all the CH genes except for the C delta gene contain the S regions which comprise tandem repetition of short unit sequences in agreement with the previous analyses of the S gamma 1, S gamma 2b, S mu, and S alpha regions. Comparison of the nucleotide sequences of all the S regions revealed that length as well as nucleotide sequences of the S regions vary among different classes of the CH gene, but they share short common sequences, (G)AGCT and TGGG(G). The nucleotide sequence of the S mu region is homologous to those of the other S regions in the decreasing order of the S epsilon, S alpha, S gamma 3, and (S gamma 1, S gamma 2b, s gamma 2a) regions. We have compared the nucleotide sequences immediately adjacent to the recombination sites of seven rearranged genes and have always fund tetranucleotides TGAG and/or TGGG, except for one case. Such tetranucleotides may constitute a part of the recognition sequence of a putative recombinase. These results provide further support for our previous proposal that the switch recombination may be facilitated by short common sequences dispersed in all the S regions.  相似文献   

2.
During B lymphocytes differentiation, switches in the expression of heavy chain immunoglobulin constant region (CH) genes occur by a novel DNA recombination mechanism. We have investigated the requirements of the CH gene switch by characterizing two rearranged gamma 2b genes from a gamma 2b producing mouse myeloma (MPC-11). One of the two gamma 2b genes is present in 2-3 copies per cell (gamma 2b strong hybridizer) while the other is present in approximately 1 copy per cell (gamma 2b weak hybridizer). Genomic clones of the gamma 2b strongly hybridizing gene indicate that this is an abortive switch event between the S gamma 3 and S gamma 2b regions. However, clones of the gamma 2b weakly hybridizing gene suggest a functional rearrangement due to the presence of VH, JH and S mu sequences. The switch-recombination sites of these rearranged gamma 2b genes and those of other CH genes show a high degree of preference for the sequence AGGTTG 5' of either the S mu donor site or the appropriate CH S acceptor site. AGGTTG and its analogs are rare in the S mu region, are somewhat prevalent in s alpha and in the case of S mu are found 5' of a tandemly repeated DNA sequence (GAGCT, GGGGT) comprising most of S mu.  相似文献   

3.
4.
M Matsuoka  K Yoshida  T Maeda  S Usuda  H Sakano 《Cell》1990,62(1):135-142
We have characterized circular DNA in mouse splenocytes treated with the mitogen lipopolysaccharide (LPS) and various cytokines, including transforming growth factor beta (TGF-beta) and interleukin 4 (IL-4). Using probes of immunoglobulin heavy chain constant genes (CH), excision products of class switch recombination were identified. The majority of the clones contained the 3' portion of the switch mu (S mu) region and the 5' portion of other switch regions. Some clones contained 3'-S gamma sequences instead of 3'-S mu. This indicates that isotype switching may occur not only from C mu, but also from one of the C gamma genes to other CH genes further down-stream. In the presence of LPS, the cytokine TGF-beta enhanced the detection of 5'-S alpha-positive clones, while the lymphokine IL-4 enhanced 5'-S gamma 1 positives. The data support the notion that TGF-beta and IL-4 can direct isotype-specific class switching.  相似文献   

5.
The immunoglobulin heavy chain isotype switch is mediated by a DNA rearrangement involving specific genomic segments referred to as switch regions. Switch regions are composed of tandemly repeated simple sequences. The role of the tandemly repeated structure of switch regions in the switch recombination process is not understood. We mapped eight recombination sites--six in the gamma 1 and two in the gamma 3 tandem arrays. In addition, we obtained molecular clones representing three of the six gamma 1 rearrangements, and determined the nucleotide sequences of the recombination sites in each. In general, the rearrangements are confined to the tandem repeat units, and are not clustered in a particular portion of either the gamma 3 or gamma 1 switch region. Nucleotide sequence analysis of one of the recombinant clones, gamma M35, reveals evidence for a successive switch event wherein a recombination between S mu and S gamma 3 was followed by recombination 57 bp downstream with S gamma 1. gamma 1 sequence data from the molecular clones we obtained, together with similar data from other investigators regarding the gamma 1, gamma 2b, and gamma 2a switch regions, reveals that recombinations tend to occur at homologous positions of the respective gamma-unit repeats, adjacent to the elements AGCT and GGGG found in each. This finding suggests that the cutting and religation step of the recombination process is mediated by a recombinase common to the four gamma-isotypes.  相似文献   

6.
During B lymphocyte differentiation, immunoglobulin heavy chain constant region (CH) genes undergo a unique series of DNA recombination events culminating in the CH class switch. CH switch (S) regions are located 2 kb 5' of each CH gene except delta (i.e. mu, gamma 3, gamma 1, gamma 2b, gamma 2a, epsilon and alpha). We describe the structural features of the gamma 3 switch region. Hybridization experiments show that S gamma 3 has remarkable homology to both S mu and other S gamma regions while S mu possesses limited homology to the other S gamma sequences. However, S mu possesses extensive sequence homology with S epsilon and S alpha. The nucleotide sequence of S gamma 3 reveals higher densities of S mu repetitive sequences (GAGCT and GGGGT) and another S region common sequence (YAGGTTG) than observed for S gamma 1, S gamma 2b or S gamma 2a. In addition, the conservation of S mu like repetitive sequences in S gamma regions is correlated with the 5' leads to 3' gamma gene order (i.e. S gamma 3 greater than S gamma 1 greater than S gamma 2b greater than S gamma 2a). A model is presented which suggests that the unique features of S gamma 3 may allow for successive switches from C mu to any C gamma gene.  相似文献   

7.
The heavy chain isotype switch is mediated by a DNA rearrangement between a donor switch region (usually mu) and a recipient switch region (gamma, epsilon, or alpha). Switch regions lie upstream of the appropriate heavy chain constant region gene and are composed of simple sequences repeated in tandem. It is not known to what extent the tandemly repeated sequences are important to the heavy chain switch recombination, and to what extent other features of switch region sequences might contribute to the switch process. We studied switches to the gamma 3 isotype by sequencing the entire gamma 3 switch region. This switch region is composed of forty-four 49 base pair units repeated in tandem. These repeated units share modest homology with the mu switch region repeated elements. Evolution of the gamma 3 switch region seems to involve insertions and deletions of the 49mer elements. We also molecularly cloned rearranged switch regions from two gamma 3-expressing hybridomas and determined the DNA sequences at the mu-gamma 3 recombination sites. We located these switch recombination sites within the germ-line gamma 3 switch region, as well as switch recombination sites from two myelomas. All four sites are found in the 5' one-third of the gamma 3 switch region. We discuss some additional trends in the sequence data near these four recombination sites.  相似文献   

8.
The B cell lymphoma I.29 consists of a mixture of cells expressing membrane-bound immunoglobulin M (IgM) (lambda) and IgA (lambda) of identical idiotypes. Whereas most of the cells express either IgM or IgA alone, 1 to 5% of the cells in this tumor express IgM and IgA simultaneously within the cytoplasm and on the cell membrane (R. Sitia et al., J. Immunol. 127:1388-1394, 1981; R. Sitia, unpublished data). When IgM+ cells are purified from the lymphoma and passaged in mice or cultured, a portion of the cells convert to IgA+. These properties suggest that some cells of the I.29 lymphoma may undergo immunoglobulin heavy chain switching, although it is also possible that the mixed population was derived by a prior switching event in a clone of cells. We performed Southern blotting experiments on genomic DNAs isolated from populations of I.29 cells containing variable proportions of IgM+ and IgA+ cells and on a number of cell lines derived from the lymphoma. The results were consistent with the deletion model for heavy chain switching, as the IgM+ cells contained rearranged mu genes and alpha genes in the germ line configuration on both the expressed and nonexpressed heavy chain chromosomes, whereas the IgA+ cells had deleted both mu genes and contained one rearranged and one germ line alpha gene. In addition, segments of DNA located within the intervening sequence 5' to the mu gene, near the site of switch recombination, were deleted from both the expressed and the nonexpressed chromosomes. Although mu genes were deleted from both chromosomes in the IgA+ cells, the sites of DNA recombination differed on the two chromosomes. On the expressed chromosome, Smu sequences were recombined with S alpha sequences, whereas on the nonexpressed chromosome, Smu sequences were recombined with S gamma 3 sequences.  相似文献   

9.
We demonstrated that a subclone of an Abelson murine leukemia virus-transformed B-lymphoid cell line switched from mu to gamma 2b expression in vitro, by the classical recombination-deletion mechanism. In this line, the expressed VHDJH region and the C gamma 2b constant region gene were juxtaposed by a recombination event which linked the highly repetitive portions of the S mu and S gama 2b regions and resulted in the loss of the C mu gene from the intervening region. An additional recombination event in this subclone involved an internal deletion in the S mu region of the expressed (switched) allele. One end of this deletion occurred very close to the switch recombination point. Despite the recombination-deletion mechanism of switching, the gamma 2b-producing line retained two copies of the C mu gene and two copies of the sequence just 5' to the S gamma 2b recombination point. The possible significance of the retention of these sequences to the mechanism of class switching is discussed.  相似文献   

10.
11.
D E Ott  F W Alt    K B Marcu 《The EMBO journal》1987,6(3):577-584
We have employed a retroviral vector, ZN(Smu/S gamma 2b)tk1, as a substrate for detecting the presence of immunoglobulin heavy chain constant region (CH) gene switch (S) recombination activity in murine pre-B cells. ZN(Smu/S gamma 2b)tk1 contains a neomycin (neo) resistance gene in addition to the herpes simplex virus thymidine kinase (Htk) gene which is positioned between murine Smu and S gamma 2b sequences. Stable acquisition of the ZN(Smu/S gamma 2b)tk1 vector was selected in G-418 and switch region recombination within these proviruses was selected by resistance to the drug bromodeoxyuridine (BUdR). Fluctuation analyses of ZN(Smu/S gamma 2b)tk1 infected 18-8tk- and 38B9tk- pre-B lines revealed Htk gene inactivations with apparent frequencies of 5 X 10(-5) and 1 X 10(-5) events/cell/generation, respectively, while G-418 resistant Ltk- fibroblasts lost the HTK phenotype at an apparent rate of 4 X 10(-8). Southern blot analysis demonstrated that switch recombination caused the deletion of the Htk gene in all pre-B clones examined while the loss of Htk in Ltk- clones was not mediated by S region recombination. In 21 out of 24 pre-B clones, the recombinations involved the tandemly repetitive portions of the Smu and S gamma 2b sequences. These results demonstrate that the CH gene S region segments inserted into ZN(Smu/S gamma 2b)tk1 are sufficient for B-cell-specific recombination/deletion within the S region tandem repeats.  相似文献   

12.
13.
14.
We have used electrophoretic mobility shift assays (EMSA) to detect B cell lineage-specific nuclear proteins that bind to diverse segments within and 3' of the Ig H chain gene cluster. DNA binding sites include sequences 5' of each of the following C region genes: mu, gamma 1, gamma 2a, epsilon, and alpha. For the most part, these binding sites lie 5' of CH-associated tandem repeats. Binding sites for the same B cell lineage-specific proteins have also been defined in the region 3' of C alpha, close to a recently described B cell-specific enhancer element. Cross-competition of EMSA indicates that the B cell lineage-specific nucleoprotein is indistinguishable from those described previously by others: S alpha-BP and BSAP. Because of the diverse sequences recognized by this protein, we term it NF-HB, B-lineage-specific nuclear factor that binds to Ig H gene segments. EMSA using segments 5' of S gamma 2a (5'S gamma 2a-176) and 3' of C alpha (3' alpha-88) shows multiple binding complexes, two of which are B cell lineage specific. The B cell-specific complex with fastest mobility contains only NF-HB, and the one with slowest mobility contains NF-HB together with a ubiquitous DNA-binding protein(s). The ubiquitous binding protein is different for 5' S gamma 2a-176 and for 3' alpha-88, representing the formation of protein-NF-HB complexes specific for these particular Ig DNA regions. Spleen cells show a single band upon EMSA with either 5'S gamma 2a-176 or 3' alpha-88. Upon LPS stimulation, additional binding complexes of slower mobility were formed resulting in a pattern comparable to those detected in pro-B, pre-B, and B cell lines. We hypothesize that NF-HB may promote physical interactions between the 3' alpha-enhancer and segments of the Ig H gene cluster.  相似文献   

15.
16.
We have examined the switch region content of 25 hybridomas that secret antibodies of various isotypes with specificity for phosphocholine or glycoproteins of herpes simplex virus. These Southern hybridization experiments included probes for the murine JH region as well as probes for the mu, gamma 3, gamma 1, gamma 2b, gamma 2a, and alpha switch regions. For 22 of the hybridomas, the deletion model of the heavy chain switch fits the data well--all switch regions upstream of the rearranged (and expressed) switch regions are deleted and all switch regions downstream remain in the germline configuration. As exceptions to a simple deletion model of the switch recombination, we have observed two, and perhaps three, examples of switch region rearrangements downstream of an expressed heavy chain gene. The 25 hybridoma DNA samples include 28 rearranged gamma switch regions; the sizes of at least 25 of these rearranged fragments are consistent with recombination in the tandemly repeated sequences associated with gamma genes. For those hybridomas with two spleen cell-derived Igh loci, including three mu-expressers, three gamma 3-expressers, four gamma 1-expressers, and one gamma 2b-expresser, the two loci tend to be rearranged to the same switch region, suggesting that the heavy chain switch rearrangement is an isotype-specific event. The exceptions within this group include three hybridomas in which the switch seems to be incomplete--on one chromosome the JH complex is rearranged to the S gamma 3 region, while on the other it remains associated with the S mu region. A second group of hybridomas, which includes four gamma 3-expressers, have both gamma 3 and gamma 1 switch rearrangements. Each of these four hybridomas includes three rearranged JH segments, suggesting that they may be the result of an unusual differentiative pathway or a technical artifact. These experiments suggest that the heavy chain switch rearrangement in normal spleen cells is a deletion event that occurs within tandemly repeated elements. The rearrangement is mediated by factors with partial, or perhaps complete, isotype specificity.  相似文献   

17.
Recombinational hotspot activity of Chi-like sequences   总被引:12,自引:0,他引:12  
Chi sites, consisting of the nucleotide octamer 5' G-C-T-G-G-T-G-G 3', stimulate coliphage lambda recombination mediated by the Escherichia coli RecBC recombination pathway. In a sensitive genetic assay using phage lambda crosses, three of four Chi-like sequences tested, namely 5' A-C-T-G-G-T-G-G 3', 5' G-T-T-G-G-T-G-G 3' and 5' G-C-T-A-G-T-G-G 3', had about 6%, 11% and 38% of full Chi activity, respectively. We conclude that certain Chi-like sequences manifest a spectrum of recombinational hotspot activities and may account for RecBC-mediated generalized recombination of lambda lacking Chi sites.  相似文献   

18.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

19.
High-density functional display of proteins on bacteriophage lambda   总被引:4,自引:0,他引:4  
We designed a bacteriophage lambda system to display peptides and proteins fused at the C terminus of the head protein gpD of phage lambda. DNA encoding the foreign peptide/protein was first inserted at the 3' end of a DNA segment encoding gpD under the control of the lac promoter in a plasmid vector (donor plasmid), which also carried lox P(wt) and lox P(511) recombination sequences. Cre-expressing cells were transformed with this plasmid and subsequently infected with a recipient lambda phage that carried a stuffer DNA segment flanked by lox P(wt) and lox P(511) sites. Recombination occurred in vivo at the lox sites and Amp(r) cointegrates were formed. The cointegrates produced recombinant phage that displayed foreign protein fused at the C terminus of gpD. The system was optimised by cloning DNA encoding different length fragments of HIV-1 p24 (amino acid residues 1-72, 1-156 and 1-231) and the display was compared with that obtained with M13 phage. The display on lambda phage was at least 100-fold higher than on M13 phage for all the fragments with no degradation of displayed products. The high-density display on lambda phage was superior to that on M13 phage and resulted in selective enrichment of epitope-bearing clones from gene-fragment libraries. Single-chain antibodies were displayed in functional form on phage lambda, strongly suggesting that correct disulphide bond formation takes place during display.This lambda phage display system, which avoids direct cloning into lambda DNA and in vitro packaging, achieved cloning efficiencies comparable to those obtained with any plasmid system. The high-density display of foreign proteins on bacteriophage lambda should be extremely useful in studying low-affinity protein-protein interactions more efficiently compared to the M13 phage-based system.  相似文献   

20.
Immunoglobulin heavy-chain switching is effected by recombination events between sites associated with tandemly repeated switch sequences located 5' to immunoglobulin heavy-chain genes. Using the band mobility shift assay, we have identified two distinct sites 5' to the alpha heavy-chain switch sequence with affinity for a single B-cell-specific DNA-binding protein, S alpha-BP. S alpha-BP was present in nuclear extracts from pre-B and B cells but was not detected in extracts from plasmacytomas, B-cell hybridomas, T-cell lymphomas, or a macrophage cell line. It was also not detectable in other nonlymphoid cells tested. Evidence suggests there are S alpha-BP-binding sites near other immunoglobulin switch sequences. As with the S alpha sites, these sites appear to be distinct from the consensus tandem repeats characteristic of immunoglobulin switch sequences. The possible functions of S alpha-BP on contacting its binding sites are discussed in the context of immunoglobulin heavy-chain switch recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号