首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly(U)-binding activity is present in the high-speed supernatant fraction of embryo homogenates from wheat seeds. The factor responsible for such activity was found to have a stimulatory effect on the elongation factor 1 (EF-1). It copurifies with EF-1L, the lighter form of EF-1, through Sephadex G-200, DEAE-cellulose, hydroxyapatite and poly(U)-Sepharose 4B column chromatography. The two factors could be separated only through a heating step which destroyed EF-1 activity whilst leaving most of the poly(U)-binding activity unaltered.  相似文献   

2.
We have identified a cellular enhancer-binding protein, present in nuclear extracts prepared from human and rodent cells, that binds to the adenovirus E1A enhancer element I sequence. The factor has been termed EF-1A, for enhancer-binding factor to the E1A core motif. EF-1A was found to bind to two adjacent, related sequence motifs in the E1A enhancer region (termed sites A and B). The binding of EF-1A to these adjacent sites, or to synthetic dimerized sites of either motif, was cooperative. The cooperative binding of EF-1A to these sites was not subject to strict spacing constraints. EF-1A also bound to related sequences upstream of the E1A enhancer region and in the polyomavirus and adenovirus E4 enhancer regions. The EF-1A-binding region in the E1A enhancer stimulated expression of a linked gene in human 293 cells when multimerized. Based on the contact sites for EF-1A binding determined by chemical interference assays, this protein appears to be distinct from any previously characterized nuclear binding protein.  相似文献   

3.
Elongation factor 1 (EF-1) was purified from rabbit reticulocytes and found to contain at least two distinct polypeptides: one of Mr 53 000 and one of Mr 30 000. The 30 000-Mr polypeptide was purified from EF-1 by treatment of the factor with 5.4 M guanidine . HCl and subsequent chromatography on DEAE-BioGel A in the presence of 5 M urea. By a number of functional criteria, the 30 000-Mr polypeptide was found to be the eucaryotic elongation factor Ts (eEF-Ts). These criteria include the ability of the polypeptide to stimulate Artemia salina eEF-Tu-dependent binding of aminoacyl-tRNA to 80-S ribosomes as well as eEF-Tu + EF-2-dependent polyphenylalanine synthesis. The reticulocyte factor also markedly increased the rate of exchange of eEF-Tu . gdp complexes with free GTP. Furthermore, rabbit antibodies to EF-1 from A. salina which was previously shown to contain eEF-Ts [Slobin, L. I. and M?ller, W. (1978) Eur. J. Biochem. 84, 69--77] were found to cross-react with reticulocyte eEF-Ts, suggesting extensive structural homology between brine shrimp and rabbit eEF-Ts. The demonstration that eEF-Ts is and integral component of EF-1 from such diverse sources as brine shrimp and rabbit reticulocytes supports the conclusion that the factor is universally present in eucaryotic EF-1.  相似文献   

4.
Enhancer factor 1A (EF-1A) is a mammalian nuclear protein that previously was shown to bind cooperatively to the repeated core enhancer element I sequence in the adenovirus E1A enhancer region. We now have characterized three binding sites for EF-1A in the polyomavirus A2 (Py) enhancer region. Site 1 resides in the Py A enhancer domain, and sites 2 and 3 reside in the Py B enhancer domain. EF-1A binding to Py site 1 is independent of cooperation with other EF-1A sites or the adjacent binding sites for PEA-1 and PEA-2, two murine nuclear factors that bind in the Py A enhancer domain. EF-1A binding to Py sites 2 and 3, in contrast, is cooperative, similar to the situation previously observed with binding sites in the adenovirus E1A enhancer region. In a transient replication assay, EF-1A site 1 functions synergistically with the PEA-1 and PEA-2 sites in the A enhancer domain to enhance Py replication. The functional cooperativity observed with the EF-1A, PEA-1, and PEA-2 sites in vivo does not reflect cooperative DNA binding interactions, as detected in vitro. Py EF-1A site 1 alone is capable of weakly stimulating Py replication. EF-1A site 1 overlaps with the binding sites for the murine nuclear protein PEA-3 and the ets family of oncoproteins.  相似文献   

5.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) [corrected] was purified to homogeneity in high yield from the two different yeasts Saccharomyces carlsbergensis (S. carls.) and Schizosaccharomyces pombe (S. pombe). The purification was easily achieved by CM-Sephadex column chromatography of the breakthrough fractions from DEAE-Sephadex chromatography of cell-free extracts. The basic proteins have a molecular weight of 47,000 for the S. carls. factor and of 49,000 for the S. pombe factor. While the purified yeast EF-1 alpha s function analogously to other eukaryotic factors and the E. coli EF-Tu in Phe-tRNA binding and polyphenylalanine synthesis, the yeast factor unusually hydrolyzed GTP on yeast ribosomes upon addition of Phe-tRNA in the absence of poly(U) as mRNA. This novelty is probably owing to the yeast ribosomes, which are assumed to lack elongation factor 3-equivalent component(s). Trypsin and chymotrypsin selectively cleaved the two yeast factors to generate resistant fragments with the same molecular weight of 43,000 (by trypsin) and of 44,000 (by chymotrypsin), respectively. Those cleavage sites were characteristically protected by the presence of several ligands bound to EF-1 alpha such as GDP, GTP, and aminoacyl-tRNA. Based on the sequence analysis of the fragments generated by the two proteases, the partial amino acid sequence of the S. carls. EF-1 alpha was deduced to be in accordance with the N-terminal region covering positions (1) to 94 and two Lys residues at the C-terminal end of the predicted total sequence of the Saccharomyces cerevisiae (S. cerev.) factor derived from DNA analysis, except for a few N-terminal residues, confirming the predicted S. cerev. sequence at the protein level. EF-1 beta and EF-1 beta gamma were isolated and highly purified as biologically active entities from the two yeasts. EF-1 beta s from the two yeasts have the same molecular weight of 27,000, whereas component gamma of the S. carls. EF-1 beta gamma showed a higher molecular weight (47,000) than that of the S. pombe factor (40,000). It was also shown that a stoichiometric complex was formed between EF-1 alpha and EF-1 beta gamma from S. pombe. Furthermore, a considerable amount of Phe-tRNA binding activity was distributed in the EF-1H (probably EF-1 alpha beta gamma) fraction from freshly prepared cell-free extracts of yeast.  相似文献   

6.
Polypeptide elongation factor 2 (EF-2) plays an essential role in protein synthesis and is believed to be indispensable for cell proliferation. Recently, it has been demonstrated that there are two kinds of EF-2 (EF-2A and EF-2B with 76.6% of sequence identity at the amino acid level) in Dictyostelium discoideum. Although the knockout of EF-2A slightly impaired cytokinesis, EF-2A null cells exhibited almost normal protein synthesis and cell growth, suggesting that there is another molecule capable of compensating for EF-2 function. Since EF-2B is the most likely candidate, we examined its function using ef-2b knockdown cells prepared by the RNAi method. Our results strongly suggest that EF-2B is required for protein synthesis and cell proliferation, functioning as the real EF-2. Interestingly, the expressions of ef-2a and ef-2b mRNAs during development are reversely regulated, and the ef-2b expression is greatly augmented in ef-2a null cells.  相似文献   

7.
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.  相似文献   

8.
The translation elongation factor EF-1 alpha of the yeast Saccharomyces cerevisiae is coded for by two genes, called TEF1 and TEF2. Both genes were cloned. TEF1 maps on chromosome II close to LYS2. The location of TEF2 is unknown. TEF2 alone is sufficient to promote growth of the cells as shown with a strain deleted for TEF1. TEF1 and TEF2 were originally identified as two strongly transcribed genes, which most likely code for an identical or nearly identical protein as judged from S1 nuclease protection experiments with mRNA-DNA hybrids. The DNA sequence analysis of TEF1 allowed the prediction of the protein sequence. This was shown, by a search in the Dayhoff protein data bank, to represent the translation elongation factor EF-1 alpha due to the striking similarity to EF-1 alpha from the shrimp Artemia. A search for TEF1 homologous sequences in several yeast species shows, in most cases, duplicated genes and a much higher sequence conservation than among genes encoding amino acid biosynthetic enzymes.  相似文献   

9.
Eukaryotic polypeptide elongation factor 1 (EF-1) from pig liver has been resolved into two complementary factors, EF-1alpha and EF-1beta (Iwasaki, K., Mizumoto, K., Tanka, M., and Kaziro, Y. (1973) J. Biochem. (Tokyo) 74, 849). This paper describes the procedures for purification of EF-1beta and some properties of the purified factor. The purification method includes an aqueous two-phase separation technique, a treatment of the crude factor with sodium cholate and two successive column chromatographies on diethyl-aminoethyl-Sephadex A-50. By this method, EF-1beta was purified about 50-fold starting from the material obtained after two-phase separation followed by ammonium sulfate fractionation with a recovery of 20%. The purified EF-1beta appeared homogeneous, having a molecular weight of about 90,000. It consisted of two unequal subunits of the molecular weights of 55,000 and 30,000. It stimulates polymerization of phenylalanine dependent on poly(U) in the presence of both EF-1alpha and EF-2, as well as the EF-1alpha-dependent binding of phenylalanyl-tRNA to ribosomes in the presence of GTP. However, it had no effect on the stoichiometric binding of phenylalanyl-tRNA to ribosomes dependent on EF-1alpha in the presence of guanyl-5'-yl methylenediphosphonate. These results indicate that the function of EF-1beta is to stimulate the recycling of EF-1alpha.  相似文献   

10.
Two species of the elongation factor 1 (EF-1) differing in molecular weight, subunit composition, and isoelectric point have been isolated from cell-free extracts of the yeast Saccharomyces cerevisiae. The ratio of these two forms of EF-1 activity (EF-1 alpha and EF-1H) seem to vary in different strains and upon the growth phase from which the cells have been isolated. The log phase cells of a protease negative yeast strain EJ101 show a distribution of EF-1 alpha and EF-1H in the ratio of 3:1. Another laboratory yeast strain, D-587-4B, shows a distribution pattern of 4:1. The two forms of EF-1 are completely separable by ion exchange, gel permeation, and hydrophobic and affinity chromatography. Yeast EF-1 alpha is a single polypeptide of molecular weight 50,000 and has an isoelectric point of 8.9. The newly identified form of the yeast EF-1 (EF-1H) has a molecular weight of 200,000. The isoelectric point of this protein is around 5.5. Electrophoresis of the partially purified EF-1H in polyacrylamide gel containing sodium dodecyl sulfate indicates the presence of three nonidentical polypeptides having molecular weights of 50,000, 47,000, and 33,000. The three polypeptides are present in the ratio of 2:1:1. EF-1H is readily converted to EF-1 alpha and EF-1 beta gamma on anion exchange columns. The 50,000 dalton component of EF-1H immunologically cross-reacts with the antibody to EF-1 alpha. The other two polypeptides do not. On the basis of molecular weight, EF-1H is 2-3-fold more active than EF-1 alpha in poly(U)-dependent polyphenylalanine synthesis. EF-1H exchanges nucleotide (GDP----GTP) at a faster rate than EF-1 alpha. Both EF-1 alpha and EF-1H exhibit similar binding constants for GDP and GTP although the affinity of EF-1 alpha for guanine nucleotides is several-fold higher than that of EF-1H. The 33,000-dalton component of EF-1H appears to be functionally analogous to EF-1 beta (Ts) isolated from other eukaryotic sources. The function of EF-1 gamma is unknown.  相似文献   

11.
12.
In this article we report the identification of the sites which are involved in the binding of the GDP-exchange factor EF-1 beta and aminoacyl tRNA to the alpha-subunit of the eukaryotic elongation factor 1 (EF-1) from Artemia. For this purpose the polypeptide chain of EF-1 alpha, having 461 amino acid residues, was proteolytically cleaved into large fragments by distinct proteases. Under well defined conditions, a mixture of two large fragments, free from intact EF-1 alpha and with molecular masses of 37 kDa and 43 kDa, was obtained. The 37-kDa and 43-kDa fragments comprise the residues 129-461 and 69-461, respectively. However, in aqueous solution and under non-denaturing conditions, the mixture still contained a short amino-terminal peptide, encompassing the residues 1-36, that remained tightly bound. The ability of the mixture of the 37+43-kDa fragments, including this amino-terminal peptide 1-36, to bind GDP or to facilitate aminoacyl tRNA binding to salt-washed ribosomes was severely reduced, compared to intact EF-1 alpha. However, both of these complexes were able to bind to the GDP-exchange-stimulating subunit EF-1 beta. A 30-kDa fragment, comprising the residues 1-287, was generated after treatment of the protein with endoproteinase Glu-C. This fragment contained the complete guanine nucleotide binding pocket. Although it was able to bind GDP and to transport aminoacyl tRNA to the ribosome, no affinity towards EF-1 beta was observed. We propose that the guanine-nucleotide-exchange stimulation by EF-1 beta is induced through binding of this factor to the carboxy-terminal part of EF-1 alpha. As a result, a decreased susceptibility towards trypsin of the guanine-nucleotide-binding pocket of EF-1 alpha, especially in the region of its presumed effector loop is induced.  相似文献   

13.
Polypeptide elongation factor 1 was isolated from yeast postribosomal supernatant. The highly purified factor was resolved on Ultrogel AcA-44 into two complementary fractions. One of these fractions contained two different polypeptide chains corresponding to a Ts-like elongation factor EF-1 beta gamma. The other fraction represented the light form of the factor, designated EF-1 alpha, with a molecular weight of approximately 50,000. The obtained results indicate that EF-1 from lower eukaryotes is also composed of three distinct polypeptides.  相似文献   

14.
Elongation factor 1 beta (EF-1 beta) from Artemia is phosphorylated to a high percentage at serine 89 by an endogenous kinase present in EF-1 beta gamma. Protein sequencing of EF-1 beta revealed that this serine residue is located N-terminally of an acidic cluster of amino acids, (formula; see text) which is critical for casein kinase II-type substrate recognition. A number of compounds known to influence casein kinases were studied, revealing that the kinase activity as present in EF-1 beta gamma belongs to the class of casein kinase II. The rate of nucleotide exchange on EF-1 alpha as catalyzed by EF-1 beta was found to be affected reversibly by the state of phosphorylation of EF-1 beta. In the presence of dephosphorylated EF-1 beta, the exchange rate is almost twice as large compared to the rate in the presence of phosphorylated EF-1 beta. Rephosphorylation of dephosphorylated EF-1 beta diminishes the activity of the protein again. The role of casein kinase II-type enzymes in modulating the function of proteins involved in polypeptide synthesis is discussed.  相似文献   

15.
The antineoplastic cyclic depsipeptide didemnin B (DB) inhibits protein synthesis in cells and in vitro. The stage at which DB inhibits protein synthesis in cells is not known, although dehydrodidemnin B arrests translation at the stage of polypeptide elongation. Inhibition of protein synthesis by DB in vitro also occurs at the elongation stage, and it was shown previously that DB prevents EF-2-dependent translocation in partial reaction models of protein synthesis. This inhibition of translocation displays an absolute requirement for EF-1alpha; however, the dependence upon EF-1alpha was previously unexplained. It is shown here that DB binds only weakly to EF-1alpha/GTP in solution, but binds to ribosome. EF-1alpha complexes with a dissociation constant K(d) = 4 microM. Thus, the inhibition of protein synthesis by DB appears to involve an interaction with both EF-1alpha and ribosomes in which all three components are required. Using diphtheria toxin-mediated ADP-ribosylation to assay for EF-2, it is demonstrated that DB blocks EF-2 binding to pre-translocative ribosome.EF-1alpha complexes, thus preventing ribosomal translocation. Based on this model for protein synthesis inhibition by DB, and the proposed mechanism of action of fusidic acid, evidence is presented in support of the Grasmuk model for EF-1alpha function in which this elongation factor does not fully depart the ribosome during polypeptide elongation.  相似文献   

16.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

17.
The functional domains of the eukaryotic elongation factor (EF) 1 beta gamma have been delineated with the use of limited proteolysis, protein microsequencing, gel electrophoresis under non-denaturing conditions and antibodies against EF-1 beta and EF-1 gamma. By means of limited proteolysis, it was possible to obtain large fragments of EF-1 beta. In contrast to amino-terminal fragments, those derived from the carboxy-terminal part of EF-1 beta were still active in enhancing the guanine nucleotide exchange of GDP bound to EF-1 alpha. With the same technique of limited proteolysis, it was possible to isolate a trypsin-resistant core from EF-1 beta gamma containing polypeptide chain fragments derived from both subunits. A polyvalent antiserum against EF-1 beta and two monoclonal antibodies against EF-1 gamma were used to identify the protein fragments in this core. The monoclonal antibodies were shown to recognize different epitopes, one localized on the amino-terminal and another on the carboxy-terminal half of EF-1 gamma. The antiserum against EF-1 beta and one of the monoclonal antibodies (mAb 36E5), which recognized the amino-terminal half of EF-1 gamma, reacted with this trypsin-resistant core. We conclude that the amino-terminal halves of both EF-1 beta and EF-1 gamma are firmly attached to each other, and that the carboxy-terminal part of EF-1 beta interacts with EF-1 alpha.  相似文献   

18.
The aim of this work was to compare the subunits of the elongation factor EF-1 and the initiation factor eIF-2 from rabbit reticulocytes. We devised a simple procedure for the purification of EF-1: stepwise chromatography on heparin-Sepharose, separation of the heavy form by sucrose gradient centrifugation, and a final step of stepwise chromatography on RNA-Sepharose. The heparin-Sepharose column also clearly separated EF-1 and EF-2 within one chromatographic step. The EF-1 was 350-fold puried and the yield was 10%. This preparation showed after electrophoresis on polyacylamide gels in the presence of sodium dodecyl sulfate three bands corresponding to those described by others as the subunits, with Mr of 54000, 49000 and 29200. An additional band of Mr 34000 was present but no others. The 49000-Mr and 34000-Mr bands corresponded exactly in molecular weight to two of three subunits of eIF-2. A more detailed comparison was therefore made of all subunits of EF-1 and eIF-2. This was done by examination of chymotryptic fingerprints on polyacrylamide gel electrophoresis. No evidence for homology between EF-1 and eIF-2 was found. However, the two larger subunits of eIF-2 had a majority of chymotryptic fragments in common, thus indicating some homology between these polypeptides.  相似文献   

19.
One gene coding for yeast cytoplasmic elongation factor 1 alpha (EF-1 alpha) was isolated by colony hybridization using a cDNA probe prepared from purified EF-1 alpha mRNA. A recombinant plasmid, pLB1, with a 6-kilobase yeast DNA insert, was found by hybrid selection and translation experiments to carry the entire gene. The nucleotide sequence of the gene with its 5'- and 3'-flanking regions was determined. The 5' and 3' ends of EF-1 alpha mRNA were localized by the S1 nuclease mapping technique. The cloned gene, called TEF1, encodes a protein of 458 amino acids (Mr = 50,071) in a single, uninterrupted reading frame. The amino acid sequence shows a strong homology with several domains of Artemia salina EF-1 alpha cytoplasmic factor, as evidenced by diagonal dot matrix analysis. Protein sequence homology is comparatively much lower with the yeast mitochondrial elongation factor. S1 nuclease mapping of the mRNA, hybridization analysis of chromosomal DNA using intragenic or extragenic DNA probes, and gene disruption experiments demonstrated the existence of two genes coding for the cytoplasmic elongation factor EF-1 alpha/haploid genome. The presence of an intact chromosomal TEF1 gene is not essential for growth of haploid yeast cells.  相似文献   

20.
We have purified and partially sequenced the EF-1 alpha protein from Xenopus laevis oocytes (EF-1 alpha O). We show that the two cDNA clones isolated by Coppared et al. (Coppard, N. J., K. Poulsen, H. O. Madsen, J. Frydenberg, and B. F. C. Clark. 1991. J. Cell Biol. 112:237-243) do not encode 42Sp50, as claimed by these authors, but two very similar forms of EF-1 alpha O (EF-1 alpha O and EF-1 alpha O1). 42Sp50 is the major protein component of a 42S nucleoprotein particle that is very abundant in previtellogenic oocytes of X. laevis, 42Sp50 differs from EF-1 alpha O not only by its amino acid sequence, but also by several properties already reported. In particular, 42Sp50 has a low EF-1 alpha activity. It is distributed uniformly in the cytoplasm of previtellogenic oocytes, in contrast to EF-1 alpha O which is concentrated in a small region of the cytoplasm, known as the mitochondrial mass or Balbiani body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号