首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal binocular eye movements of three subjects were recorded with the scleral sensor coil--revolving magnetic field technique during voluntary shifts of gaze between pairs of stationary, real, continuously visible targets. The target pairs were located either along the median plane (requiring symmetrical vergence), or on either side of the median plane (requiring asymmetrical vergence). Symmetrical vergence was primarily smooth, but it was often assisted by small, disjunctive saccades. Peak vergence speeds were very high; they increased from about 50 degrees s-1 for vergence changes of 5 degrees to between 150 and 200 degrees s-1 for vergence changes of 34 degrees. Differences between convergence and divergence were idiosyncratic. Asymmetrical vergence, requiring a vergence of 11 degrees combined with a version of 45 degrees, was largely saccadic. Unequal saccades mediated virtually all (95%) of the vergence required in the divergent direction, whereas 75% of the vergence required in the convergent direction was mediated by unequal saccades, with the remaining convergence mediated by smooth vergence, following completion of the saccades. Peak divergence speeds during these saccades were very high (180 degrees s-1 for a change of vergence of 11 degrees); much faster than the smooth, symmetrical vergence change of comparable size (14 degrees). Peak convergent saccadic speeds were about 20% lower. This difference in peak speed was caused by an initial, transient divergence, observed at the beginning of all horizontal saccades. The waveform of disjunctive saccades did not have the same shape as the waveform of conjugate saccades of similar size. The smaller saccade of the disjunctive pair was stretched out in time so as to have the same duration as its larger, companion saccade. These results permitted the conclusion that the subsystems controlling saccades and vergence are not independent. Vergence responses were relatively slow and incomplete with monocular viewing, which excluded disparity as a cue. Monocularly stimulated vergence decreased as a function of the increasing presbyopia of our three subjects. Subjects were able to generate some vergence in darkness towards previously seen and remembered targets. Such responses, however, were slow, irregular and evanescent. In conclusion, vergence shifts between targets, which provided all natural cues to distance, were fast and accurate; they appeared adequate to provide effective binocular vision under natural conditions. This result could not have been expected on the basis of previous observations, all of which had been made with severely reduced cues to depth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The relationship between disparity and ocular vergence was investigated under closed-loop as well as under open-loop viewing conditions. First we examined whether vergence responded similarly to disparity presented under open-loop and closed-loop conditions. Similar response were observed in both conditions. The direct relationship between disparity and vergence was examined by presenting constant disparities between 0.2° and 4° under open-loop viewing conditions. Such vergence responses are described as the outputs of first-order low-pass filters with different filter characteristics for each amplitude of disparity. By analyzing the latency of vergence responses induced by constant disparities with help of the transfer function of disparitycontrolled vergence, the time delay of disparity processing in the vergence loop was estimated. We suggested that the time delay was approximately between 80 and 120 ms instead of 160 ms as is generally assumed. The relationship between the rate of disparity change and vergence was examined by comparing responses to ramp and stepwise changes in target vergence. From the similar responses to ramp and staircase changes in disparity we concluded that vergence is not sensitive to the velocity of target vergence as such. On the basis of these findings we developed a model of disparity-controlled vergence. In this model disparity is processed through several parallel, imperfect integrators with slightly different low-pass filter characteristics, each of them susceptible to a limited range of disparities. Gains as well as phase lags of vergence responses to sinusoidal disparities are accurately simulated by this model. As a consequence of the limited working range of the low-pass filters, the model correctly simulates the alterations of fast and slow phases in response to step and ramps of target vergence, which are characteristic of real vergence responses.  相似文献   

3.
Oxygen uptake was measured on four male subjects during sculling gondolas at constant speeds from approximately 1 to approximately 3 m.s-1. The number of scullers on board in the different trials was one, two or four. Tractional water resistance (drag, D, N) was also measured in the same range of speeds. Energy cost of locomotion per unit of distance (C, J.m-1), as calculated from the ratio of O2 uptake above resting to, increased with v according to a power function (C = 155.2.v1.67; r = 0.88). Also D could be described as a power function of the speed: D = 12.3.v2.21; r = 0.94). The overall efficiency of motion, as obtained from the ratio of D to C, increased with speed from 9.2% at 1.41 m.s-1 to 14.5% at 3.08 m.s-1. It is concluded that, in spite of this relatively low efficiency of motion, the gondola is a very economic means. Indeed, at low speeds (approximately 1 m.s-1), the absolute amount of energy for propelling a gondola is the same as that for waking on the level at the same speed for a subject of 70 kg body mass.  相似文献   

4.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   

5.
Binocular eye movements were measured while subjects perceived the wallpaper illusion in order to test the claim made by Bishop Berkeley in 1709 that we perceive the distance of nearby objects by evaluating the vergence angles of our eyes. Four subjects looked through a nearby fronto-parallel array of vertical rods (28-35 cm away) as they binocularly fixated a point about 1 meter away. The wallpaper illusion was perceived under these conditions, i.e. the rods appeared farther away than their physical location. We found that although binocular fixation at an appropriate distance was needed to begin perceiving the wallpaper illusion (at least for naive observers), once established, the illusion was quite robust in the sense that it was not affected by changing vergence. No connection between the apparent localization of the rods and vergence was observed. We conclude that it is unlikely that vergence, itself, is responsible for the perceived distance shift in the wallpaper illusion, making it unlikely that vergence contributes to the perception of distance as Bishop Berkeley suggested. We found this to be true even when vergence angles were relatively large (more than 2 deg), the region in which the control of vergence eye movements has been shown to be both fast and effective.  相似文献   

6.
A new computerized dynamometer (the SPARK System) is described. The system can measure concentric and eccentric muscle strength (torque) during linear or nonlinear acceleration or deceleration, isokinetic movements up to 400 degrees.s-1, and isometric torque. Studies were performed to assess: I. validity and reproducibility of torque measurements; II. control of lever arm position; III. control of different velocity patterns; IV. control of velocity during subject testing; and, V. intra-individual reproducibility. No significant difference was found between torque values computed by the system and known torque values (p greater than 0.05). No difference was present between programmed and external measurement of the lever arm position. Accelerating, decelerating and isokinetic velocity patterns were highly reproducible, with differences in elapsed time among 10 trials being never greater than 0.001 s. Velocity during concentric and eccentric isokinetic quadriceps contractions at 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1 never varied by more than 3 degrees.s-1 among subjects (N = 21). Over three days of testing, the overall error for concentric and eccentric quadriceps contraction peak torque values for 5 angular velocities between 30 degrees.s-1 and 270 degrees.s-1 ranged from 5.8% to 9.0% and 5.8% to 9.6% respectively (N = 25). The results indicate that the SPARK System provides valid and reproducible torque measurements and strict control of velocity. In addition, the intra-individual error is in accordance with those reported for other similar devices.  相似文献   

7.
Static and dynamic assessment of the Biodex dynamometer   总被引:2,自引:0,他引:2  
The validity and accuracy of the Biodex dynamometer was investigated under static and dynamic conditions. Static torque and angular position output correlated well with externally derived data (r = 0.998 and r greater than 0.999, respectively). Three subjects performed maximal voluntary knee extensions and flexions at angular velocities from 60 to 450 degrees.s-1. Using linear accelerometry, high speed filming and Biodex software, data were collected for lever arm angular velocity and linear accelerations, and subject generated torque. Analysis of synchronized angular position and velocity changes revealed the dynamometer controlled angular velocity of the lever arm to within 3.5% of the preset value. Small transient velocity overshoots were apparent on reaching the set velocity. High frequency torque artefacts were observed at all test velocities, but most noticeably at the faster speeds, and were associated with lever arm accelerations accompanying directional changes, application of resistive torques by the dynamometer, and limb instability. Isokinematic torques collected from ten subjects (240, 300 and 400 degrees.s-1) identified possible errors associated with reporting knee extension torques at 30 degrees of flexion. As a result of tissue and padding compliance, leg extension angular velocity exceeded lever arm angular velocity over most of the range of motion, while during flexion this compliance meant that knee and lever arm angles were not always identical, particularly at the start of motion. Nevertheless, the Biodex dynamometer was found to be both a valid and an accurate research tool; however, caution must be exercised when interpreting and ascribing torques and angular velocities to the limb producing motion.  相似文献   

8.
The effect of varying the body surface area being cooled by a liquid microclimate system was evaluated during exercise heat-stress conditions. Six male subjects performed a total of six exercise (O2 uptake = 1.2 l/min) tests in a hot environment (ambient temperature = 38 degrees C, relative humidity = 30%) while dressed in clothing having low moisture permeability and high insulation. Each subject completed two upper body exercise (U; arm crank) tests: 1) with only the torso surface (T) cooled; and 2) with the surfaces of both the torso and upper arms (TA) cooled [coolant temperature at the inlet (Ti) was 20 degrees C for all upper body tests]. Each subject also completed four lower body exercise (L; walking) tests: 1) with only the T cooled (Ti = 20 degrees C); 2) with only the T cooled (Ti = 26 degrees C); 3) with torso, upper arm, and thigh surface (TAT) cooled (Ti = 20 degrees C); and 4) with TAT cooled (Ti = 26 degrees C). During U exercise, TA cooling had no effects compared with cooling only T. During L exercise, sweat rates, heart rates, and rectal temperature (Tre) changes were less with TAT cooling compared with cooling only the T. Altering Ti had no effect on Tre changes, but higher heart rates were observed with 26 than with 20 degrees C. These data indicate that cooling arms during upper body exercise provides no thermoregulatory advantage, although cooling the thigh surfaces during lower body exercise does provide an advantage.  相似文献   

9.
Nitrophenyl-EGTA and DM-nitrophen are Ca2+ cages that release Ca2+ when cleaved upon illumination with near-ultraviolet light. Laser photolysis of nitrophenyl-EGTA produced transient intermediates that decayed biexponentially with rates of 500,000 s-1 and 100,000 s-1 in the presence of saturating Ca2+ and 290,000 s-1 and 68,000 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. Laser photolysis of nitrophenyl-EGTA in the presence of Ca2+ and the Ca2+ indicator Ca-orange-5N produced a monotonic increase in the indicator fluorescence, which had a rate of 68,000 s-1 at pH 7.2 and 25 degrees C. Irradiation of DM-nitrophen produced similar results with somewhat slower kinetics. The transient intermediates decayed with rates of 80,000 s-1 and 11,000 s-1 in the presence of Ca2+ and 59,000 s-1 and 3,600 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. The rate of increase in Ca(2+)-indicator fluorescence produced upon photolysis of the DM-nitrophen: Ca2+ complex was 38,000 s-1 at pH 7.2 and 25 degrees C. In contrast, pulses in Ca2+ concentration were generated when the chelator concentrations were more than the total Ca2+ concentration. Photoreleased Ca2+ concentration stabilized under these circumstances to a steady state within 1-2 ms.  相似文献   

10.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

11.
The formation and dissociation of the aldolase-dihydroxyacetone phosphate complex were studied by following changes in A240 [Topper, Mehler & Bloom (1957), Science 126, 1287-1289]. It was shown that the enzyme-substrate complex (ES) slowly isomerizes according to the following reaction: (formula: see text) the two first-order rate constants for the isomerization step being k+2 = 1.3s-1 and k-2 = 0.7s-1 at 20 degrees C and pH 7.5. The dissociation of the ES complex was provoked by the addition of the competitive inhibitor hexitol 1,6-bisphosphate. At 20 degrees C and pH 7.5, k+1 was 4.7 X 10(6)M-1-S-1 and k-1 was 30s-1. Both the ES and the ES* complexes react rapidly with 1.7 mM-glyceraldehyde 3-phosphate, the reaction being practically complete in 40 ms. This shows that the ES* complex is not a dead-end complex. Evidence was also provided that aldolase binds and utilizes only the keto form of dihydroxyacetone phosphate.  相似文献   

12.
Regional cutaneous sensitivity to cooling was assessed in males by separately immersing four discrete skin regions in cold water (15 degrees C) during head-out immersion. The response measured was gasping at the onset of immersion; the gasping response appears to be the result of a nonthermoregulatory neurogenic drive from cutaneous cold receptors. Subjects of similar body proportions wore a neoprene "dry" suit modified to allow exposure to the water of either the arms, upper torso, lower torso, or legs, while keeping the unexposed skin regions thermoneutral. Each subject was immersed to the sternal notch in all four conditions of partial exposure plus one condition of whole body exposure. The five cold water conditions were matched by control immersions in lukewarm (34 degrees C) water, and trials were randomized. The magnitude of the gasping response was determined by mouth occlusion pressure (P0.1). For each subject, P0.1 values for the 1st min of immersion were integrated, and control trial values, although minimal, were subtracted from their cold water counterpart to account for any gasping due to the experimental design. Results were averaged and showed that the highest P0.1 values were elicited from whole body exposure, followed in descending order by exposures of the upper torso, legs, lower torso, and arms. Correction of the P0.1 response for differences in exposed surface area (A) and cooling stimulus (delta T) between regions gave a cold sensitivity index [CSI, P0.1/(A.delta T)] for each region and showed that the index for the upper torso was significantly higher than that for the arms or legs; no significant difference was observed between the indexes for the upper and lower torso.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Model-based tracking, using CT and biplane fluoroscopy, allows highly accurate quantification of glenohumeral motion and changes in the subacromial space. Previous investigators have used custom-built biplane fluoroscopes designed specifically for kinematic applications, which are available at few institutions and require FDA approval prior to clinical use. The aim of this study was to demonstrate the utility of an off-the-shelf clinical biplane fluoroscope for kinematic applications by validating model-based tracking for measurement of glenohumeral motion using an unmodified clinical system. Biplane images of each shoulder of a cadaver torso were acquired at various joint positions and during simulated movements along anatomical planes of motion. The pose of each humerus and scapula was determined using model-based tracking and compared to a bead-based gold standard. Error due to a temporal-offset between corresponding biplane images, characteristic of clinical biplane systems, was determined by comparison of measured and known relative position of 2 bead clusters of a phantom that was imaged while moved throughout the fluoroscopy image volume. Model-based tracking had global kinematic mean absolute errors of 0.27 mm and 0.29° (static), and 0.22–0.32 mm and 0.12–0.45° (dynamic). Glenohumeral mean absolute errors were 0.39 mm and 0.45° (static), and 0.36–0.42 mm and 0.41–0.48° (dynamic). The temporal-offset was predicted to add errors of 0.06–0.85 mm and 0.05–0.28° for cadaveric trials for the speeds examined. For defined speeds, sub-millimeter and sub-degree kinematic accuracy and precision were achieved using an unmodified clinical biplane fluoroscope for quantification of glenohumeral motion.  相似文献   

14.
During natural activities, two types of eye movements - saccades and vergence - are used in concert to point the fovea of each eye at features of interest. Some electrophysiological studies support the concept of independent neurobiological substrates for saccades and vergence, namely saccadic and vergence burst neurons. Discerning the interaction of these two components is complicated by the near-synchronous occurrence of saccadic and vergence components. However, by positioning the far target below the near target, it is possible to induce responses in which the peak velocity of the vertical saccadic component precedes the peak velocity of the horizontal vergence component by approximately 75 ms. When saccade-vergence responses are temporally dissociated in this way, the vergence velocity waveform changes, becoming less skewed. We excluded the possibility that such change in skewing was due to visual feedback by showing that similar behavior occurred in darkness. We then tested a saccade-related vergence burst neuron (SVBN) model proposed by Zee et al. in J Neurophysiol 68:1624-1641 (1992), in which omnipause neurons remove inhibition from both saccadic and vergence burst neurons. The technique of parameter estimation was used to calculate optimal values for responses from human subjects in which saccadic and convergence components of response were either nearly synchronized or temporally dissociated. Although the SVBN model could account for convergence waveforms when saccadic and vergence components were nearly synchronized, it could not when the components were temporally dissociated. We modified the model so that the saccadic pulse changed the parameter values of the convergence burst units if both components were synchronized. The modified model accounted for velocity waveforms of both synchronous and dissociated convergence movements. We conclude that both the saccadic pulse and omnipause neuron inhibition influence the generation of vergence movements when they are made synchronously with saccades.  相似文献   

15.
Yang Q  Kapoula Z 《PloS one》2011,6(5):e20322

Background

The initiation of memory guided saccades is known to be controlled by the frontal eye field (FEF). Recent physiological studies showed the existence of an area close to FEF that controls also vergence initiation and execution. This study is to explore the effect of transcranial magnetic simulation (TMS) over FEF on the control of memory-guided saccade-vergence eye movements.

Methodology/Principal Findings

Subjects had to make an eye movement in dark towards a target flashed 1 sec earlier (memory delay); the location of the target relative to fixation point was such as to require either a vergence along the median plane, or a saccade, or a saccade with vergence; trials were interleaved. Single pulse TMS was applied on the left or right FEF; it was delivered at 100 ms after the end of memory delay, i.e. extinction of fixation LED that was the “go” signal. Twelve healthy subjects participated in the study. TMS of left or right FEF prolonged the latency of all types of eye movements; the increase varied from 21 to 56 ms and was particularly strong for the divergence movements. This indicates that FEF is involved in the initiation of all types of memory guided movement in the 3D space. TMS of the FEF also altered the accuracy but only for leftward saccades combined with either convergence or divergence; intrasaccadic vergence also increased after TMS of the FEF.

Conclusions/Significance

The results suggest anisotropy in the quality of space memory and are discussed in the context of other known perceptual motor anisotropies.  相似文献   

16.
A J Moody  U Brandt  P R Rich 《FEBS letters》1991,293(1-2):101-105
Evidence is presented that single electron reduction is sufficient for rapid electron transfer (k greater than 20 s-1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in 'fast' oxidase, whereas in 'slow' oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k congruent to 0.01 s-1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in 'fast' oxidase, it seems that equilibration with haem a3 is relatively slow (k congruent to 2 s-1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k congruent to 2.4 x 10(5) M-1.s-1).  相似文献   

17.
S Sally  R Gurnsey 《Spatial Vision》2001,14(2):217-234
Humans are extremely sensitive to symmetry when it is foveated but sensitivity drops as a symmetrical region of a fixed size is moved into the periphery. A psychophysical study was undertaken to determine if eccentricity dependent sensitivity loss could be overcome by magnifying stimuli at each eccentricity (E) by a factor F = 1 + E/E2, where E2 indicates the eccentricity at which the size of a stimulus must be doubled, relative to a foveal standard, to achieve equivalent performance. The psychophysical task required subjects to decide on each trial in which of two intervals a symmetrical stimulus had been presented. Stimuli were presented at a range of sizes and eccentricities (0 to 8 degrees) and the probability of a correct discrimination was computed for each condition. In Experiment 1, thresholds were measured with stimuli set to maximum available contrast and, in Experiment 2, stimuli were presented at a constant multiple of contrast detection threshold. In both experiments, a single scaling function removed most of the eccentricity dependent variation from the data. However, the E2 value recovered for one subject tested in both experiments was larger by about 65% when stimuli were not equated for visibility. We conclude that symmetry detection can be equated across a range of eccentricities by scaling stimuli with an E2 in the range of 0.88 to 1.38 degrees. Failure to equate for visibility across all viewing conditions may result in an inflated estimate of E2.  相似文献   

18.
The timing of glove movements used by baseball pitchers to catch fast approaching balls (i.e., line drives) was examined in two tests to determine the responses and temporal characteristics of glove movements in high school and college baseball pitchers. Balls were projected toward the head of participants at 34.8 m.s-1 (78 mph) on average in an indoor test and at speeds approaching 58.1 m.s-1 (130 mph) in a field test. Pitchers caught over 80% and 15% of the projected balls in the indoor and field tests, respectively. Analyses of glove responses indicated that all pitchers could track the line drives and produce coordinated glove movements, which were initiated 160 ms (+/-47.8), on average, after the ball was launched. College pitchers made initial glove movements sooner than high school pitchers in the field test (p=0.012). In contrast, average glove velocity for pitchers increased from 1.33 (+/-0.61) to 3.45 (+/-0.86) m.s-1 across the tests, but did not differ between experience levels. Glove movement initiation and speed were unrelated, and pitchers utilized visual information throughout the ball's flight to catch balls that approached at speeds exceeding the estimated speeds in competitive situations.  相似文献   

19.
Calcium dynamics associated with a single action potential were studied quantitatively in the calyx of Held, a large presynaptic terminal in the rat brainstem. Terminals were loaded with different concentrations of high- or low-affinity Ca2+ indicators via patch pipettes. Spatially averaged Ca2+ signals were measured fluorometrically and analyzed on the basis of a single compartment model. A single action potential led to a total Ca2+ influx of 0.8-1 pC. The accessible volume of the terminal was about 0.4 pl; thus the total calcium concentration increased by 10-13 microM. The Ca(2+)-binding ratio of the endogenous buffer was about 40, as estimated from the competition with Fura-2, indicating that 2.5% of the total calcium remained free. This is consistent with the peak increase in free calcium concentration of about 400 nM, which was measured directly with MagFura-2. The decay of the [Ca2+]i transients was fast, with time constants of 100 ms at 23 degrees C and 45 ms at 35 degrees C, indicating Ca2+ extrusion rates of 400 and 900 s-1, respectively. The combination of the relatively low endogenous Ca(2+)-binding ratio and the high rate of Ca2+ extrusion provides an efficient mechanism for rapidly removing the large Ca2+ load of the terminal evoked by an action potential.  相似文献   

20.
An automated sampling device coupled to a stirred tank reactor was developed for monitoring intracellular metabolite dynamics. Sample flasks fixed in transport magazines were moved by a step engine in a way that each sample flask was filled within 220 ms, resulting in a sampling rate of 4.5 s-1. Rapid inactivation of the metabolism was achieved by spraying the samples into 60% methanol at -50 degrees C. After centrifugation of the quenched cells at -20 degrees C the metabolites were extracted with perchloric acid and analyzed biochemically or with HPLC. The automated sampling device was applied for investigation of the intracellular metabolite dynamics of glycolysis in Escherichia coli after rapid glucose addition to a glucose-limited steady-state culture. For the first time oscillations of intracellular metabolite concentrations like glucose-6-phosphate, phosphoenolpyruvate, glyceraldehyde 3-phosphate, dihydroxyacetonphosphate, 3-phosphoglycerate, and pyruvate were quantified on a subseconds to seconds scale in E. coli. As an example, the kinetics of the decomposition of fructose 1, 6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetonphosphate were investigated by use of a well-known mechanistic kinetic model and the measured in vivo metabolite dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号