首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to improve plating efficiency of sugar beet mesophyll protoplast cultures. Preliminary experiments showed that cultures of good quality, viable protoplasts were obtained in rich media based on the Kao and Michayluk formulation and with the calcium alginate as an embedding matrix. Nevertheless, in these cultures cell divisions were either not observed or very seldom confirming earlier reported recalcitrance of sugar beet protoplasts. The recalcitrant status of these cultures was reversed upon application of exogenous phytosulfokine (PSK)—a peptidyl plant growth factor. The highest effectiveness of PSK was observed at 100 nM concentration. Plating efficiencies obtained in the presence of PSK reached approximately 20% of the total cultured cells. The stimulatory effect of phytosulfokine was observed for all tested breeding stocks of sugar beet. Our data indicate that PSK is a powerful agent able to overcome recalcitrance of plant protoplast cultures.  相似文献   

2.
Information concerning the sugar status of plant cells is of greatimportance during all stages of the plant life cycle. The aim of this work wasto study primary carbohydrate metabolism in hairy roots of red beet. Growth ofhairy roots of red beet in vitro and changes in concentration of major nutrientsand sugar in the media were measured over a growth cycle of 16 days. We havealso determined the levels of key enzymes in the pathways of sucrose metabolism.Sucrose concentration decreased as hairy root growth proceeded while no changein glucose and fructose levels in the medium was found during the first 3 daysindicating that external sucrose is preferably taken to the cell before it ishydrolyzed by extracellular invertase. The increase in glucose and fructoselevels in the media after 5 days of culture indicates extracellular hydrolysisof sucrose which was further supported by the activity of acid invertaseobserved during that time in the culture medium. The uptake of mineral nutrientsby hairy root of red beet was monitored continuously during the culture cycle.The preferential use of NH4 + overNO3 at the beginning of the culture andacidification of culture media were the two most notable results concerningnitrogen nutrition during hairy root growth of red beet.  相似文献   

3.
The percentage of sucrose in sugar beet storage root fresh and dry matter is closely related to root structure. It has been suggested that the sucrose content might be increased by using plant growth regulators to modify storage root structure through control of cambial development, cell division and cell expansion. During storage root development correlations were found between the changing phytohormone profiles and the formation of secondary cambia and their subsequent cell division and expansion. Sugar beet root derived cell suspension cultures were used for detailed studies of the roles of endogenous phytohormones. The gibberellin synthesis inhibitor paclobutrazol was tested in cell cultures and whole plants. The observations provide a basis for development of plant growth regulator regimes to optimise sucrose yield from sugar beet.  相似文献   

4.
Eighteen isolates from sugar beet roots associated with an unknown etiology were characterized based on observations of morphological characters, hyphal growth at 4-28 C, production of phenol oxidases and sequence analysis of internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA (rDNA). The isolates did not produce asexual or sexual spores, had binucleate hyphal cells with clamp connections, grew 4-22 C with estimated optimal growth at 14.5 C and formed a dark brown pigment on potato dextrose or malt extract agar amended with 0.5% tannic acid. Color changes observed when solutions of gum guiac, guiacol and syringaldzine were applied directly to mycelium grown on these media indicated that all isolates produced phenol oxidases. Sequences of ITS and LSU regions on the rDNA gene from 15 isolates were 99.2-100% identical, and analysis of sequence data with maximum likelihood and maximum parsimony suggest that the isolates from sugar beet roots are phylogenetically related to Athelia bombacina, Granulobasidium vellereum and Cyphella digitalis. High statistical support for both loci under different criteria confirmed that Athelia bombacina was consistently the closest known relative to the sugar beet isolates. Additional taxonomic investigations are needed before species can be clarified and designated for these isolates.  相似文献   

5.
6.
AIMS: Isolates of Candida valida, Rhodotorula glutinis and Trichosporon asahii from the rhizosphere of sugar beet in Egypt were examined for their ability to colonize roots, to promote plant growth and to protect sugar beet from Rhizoctonia solani AG-2-2 diseases, under glasshouse conditions. METHODS AND RESULTS: Root colonization abilities of the three yeast species were tested using the root colonization plate assay and the sand-tube method. In the root colonization plate assay, C. valida and T. asahii colonized 95% of roots after 6 days, whilst Rhod. glutinis colonized 90% of roots after 8 days. Root-colonization abilities of the three yeast species tested by the sand-tube method showed that roots and soils attached to roots of sugar beet seedlings were colonized to different degrees. Population densities showed that the three yeast species were found at all depths of the rhizosphere soil adhering to taproots up to 10 cm, but population densities were significantly (P < 0.05) greater in the first 4 cm of the root system compared with other root depths. The three yeast species, applied individually or in combination, significantly (P < 0.05) promoted plant growth and reduced damping off, crown and root rots of sugar beet in glasshouse trials. The combination of the three yeasts (which were not inhibitory to each other) resulted in significantly (P < 0.05) better biocontrol of diseases and plant growth promotion than plants exposed to individual species. CONCLUSIONS: Isolates of C. valida, Rhod. glutinis and T. asahii were capable of colonizing sugar beet roots, promoting growth of sugar beet and protecting the seedlings and mature plants from R. solani diseases. This is the first successful attempt to use yeasts as biocontrol agents against R. solani which causes root diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeasts were shown to provide significant protection to sugar beet roots against R. solani, a serious soil-borne root pathogen. Yeasts also have the potential to be used as biological fertilizers.  相似文献   

7.
The effect of foliar and soil applied paclobutrazol on potato were examined under non-inductive condition in a greenhouse. Single stemmed plants of the cultivar BP1 were grown at 35(±2)/20(±2) °C day/night temperatures, relative humidity of 58%, and a 16 h photoperiod. Twenty-eight days after transplanting paclobutrazol was applied as a foliar spray or soil drench at rates of 0, 45.0, 67.5, and 90.0 mg active ingredient paclobutrazol per plant. Regardless of the method of application paclobutrazol increased chlorophyll a and b contents of the leaf tissue, delayed physiological maturity, and increased tuber fresh mass, dry matter content, specific gravity, dormancy period of the tubers. Paclobutrazol reduced the number of tubers per plant. A significant interaction between rates and methods of paclobutrazol application were observed with respect to plant height and tuber crude protein content. Foliar application gave a higher rate of net photosynthesis than the soil drench. Paclobutrazol significantly reduced total leaf area and increased assimilate partitioning to the tubers. The study clearly showed that paclobutrazol is effective to suppress excessive vegetative growth, favor assimilation to the tubers, increase tuber yield, improve tuber quality and extend tuber dormancy of potato grown in high temperatures and long photoperiods.  相似文献   

8.
Aims:  To evaluate the ability of the isolated actinomycetes to inhibit in vitro plant pathogenic fungi and the efficacy of promising antagonistic isolates to reduce in vivo the incidence of root rot induced by Sclerotium rolfsii on sugar beet.
Methods and Results:  Actinomycetes isolated from rhizosphere soil of sugar beet were screened for antagonistic activity against a number of plant pathogens, including S.   rolfsii . Ten actinomycetes out of 195 screened in vitro were strongly inhibitory to S. rolfsii . These isolates were subsequently tested for their ability to inhibit sclerotial germination and hyphal growth of S. roflsii . The most important inhibitions were obtained by the culture filtrate from the isolates J-2 and B-11, including 100% inhibition of sclerotial germination and 80% inhibition of hyphal growth. These two isolates (J-2 and B-11) were then screened for their ability to protect sugar beet against infection of S. rolfsii induced root rot in a pot trial. The treatment of S. rolfsii infested soil with a biomass and culture filtrate mixture of the selected antagonists reduced significantly ( P  ≤ 0·05) the incidence of root rot on sugar beet. Isolate J-2 was most effective and allowed a high fresh weight of sugar beet roots to be obtained. Both antagonists J-2 and B-11 were classified as belonging to the genus Streptomyces species through morphological and chemical characteristics as well as 16S rDNA analysis.
Conclusion:  Streptomyces isolates J-2 and B-11 showed a potential for controlling root rot on sugar beet and could be useful in integrated control against diverse soil borne plant pathogens.
Significance and Impact of the Study:  This investigation showed the role, which actinomycete bacteria can play to control root rot caused by S.   rolfsii , in the objective to reduce treatments with chemical fungicides.  相似文献   

9.
Effects of increasing weed-beet density on sugar-beet yield and quality   总被引:1,自引:0,他引:1  
Weed beets are an increasing problem in many sugar-beet crops in many countries. At present about one sugar-beet field in four in England is infested with weed-beet seed. Control in other crops can be achieved using selective herbicides but in sugar beet the weed beets, many of which are of annual habit, are not easily controlled and often compete with the crop. Experiments were done to quantify the yield loss caused by weed beet in sugar-beet crops. Transects were laid out across three fields in 1985 and 1986 and plots located thereon to include the range of weed-beet densities found in the field. Weed beet did not affect the concentration of sugar (sucrose), potassium, sodium, α amino nitrogen or invert sugar in the crop beets. Root and sugar yields were progressively reduced by increasing densities of weed beet. A rectangular hyperbola described the data slightly better than an asymptotic model. There was no indication of a threshold density of weed beet below which there was no yield loss, which averaged 11.7% for each weed beet plant/m2. This corresponds to an average 0.6% sugar yield loss for each 1% of bolted weed beet in the root crop up to 100%, which is similar to the reported losses resulting from bolters in the root crop.  相似文献   

10.
AIM: To study the antagonistic activity by Pseudomonas fluorescens strain 96.578 on the plant pathogenic fungus Rhizoctonia solani. METHODS AND RESULTS: Strain 96.578 produced a new cyclic lipopeptide, tensin. High tensin production per cell was detected in liquid media with glucose, mannitol or glutamate as growth substrate while fructose, sucrose and asparagine supported low production. Tensin production was nearly constant in media with different initial C levels, while low initial N contents reduced production. When applied to sugar beet seeds, strain 96.578 produced tensin during seed germination. When challenged with strain 96.578 or purified tensin, Rhizoctonia solani reduced radial mycelium extension but increased branching and rosette formation. CONCLUSION: The antagonistic activity of strain 96.578 towards Rhizoctonia solani was caused by tensin. SIGNIFICANCE AND IMPACT OF THE STUDY: When coated onto sugar beet seeds, tensin production by strain 96.578 could be of significant importance for inhibition of mycelial growth and seed infection by Rhizoctonia solani.  相似文献   

11.
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19–121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.  相似文献   

12.
A. fabae populations, started at the 3–4 leaf-stage of sugar beet in the glasshouse and peaking at 3000 individuals per plant, reduced leaf area by 64% at the 14 leaf-stage. The size of the heavily-infested leaves number 5 to 10 was reduced by 80% or more. The rate of leaf growth regained normal values after the aphid populations collapsed, but the infested plants did not make up for the decrease in leaf area production that had been incurred during the infestation. Total dry matter production over a period of 15 weeks was reduced by 47%. Honeydew had no effect on leaf size or dry matter production. Sugar beet plants in the field became infested with A. fabae at the 2–3, 4–5 and 6–8 leaf stages. Maximum populations of 800, 2100 and 2200 aphids per plant were recorded, respectively. The pertinent reductions in leaf area were 91%, 67% and 34% at the 10–12 leaf-stage and 79%, 65% and 14% at harvest while the total dry matter produced was reduced by 91%, 79% and 16%. Neighbouring plants of the early-infested sugar beet plants gained significantly higher weights than control plants. Honeydew had no effect on leaf area or dry matter production. The consequences of these results for our understanding of Aphis fabae injury in sugar beet and aphid control in the field are discussed.  相似文献   

13.
The separate effects of the aphid‐transmitted poleroviruses; Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV), on the yield of field‐grown sugar beet were studied following different inoculation dates from May to July in 1997,1999 and 2000. Each sugar beet plant within the appropriate plots was infected with virus using at least 10 wingless viruliferous Myzus persicae per plant. In all 3 years, overall yield losses caused by BMYV were negatively correlated with time of infection with early season (May) inoculations causing 18–27% losses in sugar yield but late season losses only 4–15%. BChV decreased the sugar yield and sugar content of beet following early season inoculations, although the effects on sugar yield were more variable (range 8–24%) and the virus appeared to be less damaging compared to BMYV. However, inoculations with BChV in July of each year caused greater root and sugar losses than inoculations with BMYV at that time. Both poleroviruses increased the sodium content of the roots early in the season, although neither virus had an effect on potassium levels at any stage.  相似文献   

14.
Effects of cyanide and rotenone were examined on respiration (oxygen uptake) in mitochondria isolated from sugar beet (Beta vulgaris L.) taproots at various stages of plant growth and development. In mitochondria from growing and cool-stored taproots, the ability of cyanide-resistant, salicylhydroxamic acid-sensitive alternative oxidase (AO) to oxidize malate, succinate, and other substrates of tricarboxylic acid cycle (TCA) was low and constituted less than 10% compared to predominant activity of the cytochrome oxidase pathway during State 3 respiration. Artificial aging of storage tissue (2-day incubation of tissue sections under high humidity at 20°C) substantially activated AO, but the highest capacity (V alt) of this pathway of mitochondrial oxidation was only observed in the presence of pyruvate and a reducing agent dithiothreitol. At the same time, mitochondria from growing taproots exhibited high rates of rotenone-resistant respiration, and these rates gradually declined during plant growth and development. The slowest rates of this respiration were observed during oxidation of NAD-dependent TCA substrates in mitochondria from dormant storage organ. The results are discussed in relation to significance of alternative electron transport pathways during growth and storage of sugar beet taproots.  相似文献   

15.
Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.  相似文献   

16.
该试验以绿化卷材为基质材料,对沙场、渣场和混凝土屋面3种立地条件下生长的黄荆进行不同浓度(0、100、200、300、400mg·L~(-1))多效唑处理,研究根施多效唑对黄荆生长和生理特征的影响以及不同立地环境的应用差异。结果显示:(1)随多效唑浓度升高,3种立地类型黄荆株高和生物量呈降低趋势,冠幅、基径、叶面积、根幅、主根长和主根径呈减小趋势,叶片长宽比和根冠比表现出增大的趋势;多效唑处理使黄荆叶片相对含水量、叶绿素含量、可溶性糖和可溶性蛋白含量增加,使丙二醛含量下降。(2)不同立地条件下黄荆对多效唑处理的表现具有一定差异,隶属函数法综合评价显示,对沙场、渣场和屋面3种立地类型的黄荆生长调控效果最佳的多效唑浓度分别为400mg·L~(-1)、300mg·L~(-1)、100mg·L~(-1)。(3)当多效唑浓度在渣场和屋面分别为400、300mg·L~(-1)时,黄荆叶片开始受到伤害,对多效唑的耐受阈值表现为沙场渣场屋面。研究认为,多效唑可有效调控黄荆的形态和生物量分配,增强细胞渗透调节和抗氧化损伤能力,从而提高黄荆的抗逆性和环境适应性,但在应用时应考虑不同立地背景的差异,因地制宜地选择使用浓度和用量,使其更好地应用于人工植被恢复与建设。  相似文献   

17.
Efficient regeneration via somatic embryogenesis (SE) would be a valuable system for the micropropagation and genetic transformation of sugar beet. This study evaluated the effects of basic culture media (MS and PGo), plant growth regulators, sugars and the starting plant material on somatic embryogenesis in nine sugar beet breeding lines. Somatic embryos were induced from seedlings of several genotypes via an intervening callus phase on PGo medium containing N6-benzylaminopurine (BAP). Calli were mainly induced from cotyledons. Maltose was more effective for the induction of somatic embryogenesis than was sucrose. There were significant differences between genotypes. HB 526 and SDM 3, which produced embryogenic calli at frequencies of 25–50%, performed better than SDM 2, 8, 9 and 11. The embryogenic calli and embryos produced by this method were multiplied by repeated subculture. Histological analysis of embryogenic callus cultures indicated that somatic embryos were derived from single- or a small number of cells. 2,4-dichlorophenoxyacetic acid (2,4-D) was ineffective for the induction of somatic embryogenesis from seedlings but induced direct somatic embryogenesis from immature zygotic embryos (IEs). Somatic embryos were mainly initiated from hypocotyls derived from the cultured IEs in line HB 526. Rapid and efficient regeneration of plants via somatic embryogenesis may provide a system for studying the molecular mechanism of SE and a route for the genetic transformation of sugar beet.  相似文献   

18.
19.
Seasonal shifts in rhizosphere microbial populations were investigated to follow the influence of plant developmental stage. A field study of indigenous microbial rhizosphere communities was undertaken on pea (Pisum satvium var. quincy), wheat (Triticum aestivum var. pena wawa) and sugar beet (Beta vulgaris var. amythyst). Rhizosphere community diversity and substrate utilization patterns were followed throughout a growing season, by culturing, rRNA gene density gradient gel electrophoresis and BIOLOG. Culturable bacterial and fungal rhizosphere community densities were stable in pea and wheat rhizospheres, with dynamic shifts observed in the sugar beet rhizosphere. Successional shifts in bacterial and fungal diversity as plants mature demonstrated that different plants select and define their own functional rhizosphere communities. Assessment of metabolic activity and resource utilization by bacterial community-level physiological profiling demonstrated greater similarities between different plant species rhizosphere communities at the same than at different developmental stages. Marked temporal shifts in diversity and relative activity were observed in rhizosphere bacterial communities with developmental stage for all plant species studied. Shifts in the diversity of fungal and bacterial communities were more pronounced in maturing pea and sugar beet plants. This detailed study demonstrates that plant species select for specialized microbial communities that change in response to plant growth and plant inputs.  相似文献   

20.
The yield of plants of monogerm cultivars of sugar beet artificially infected with both beet yellows and beet mild yellowing viruses was, on average, depressed 2–7% for every 100 ‘infected plant weeks’, equivalent to c. £25/ha at 1976 prices. The cv. Vytomo, previously recommended to growers as being tolerant of infection by virus yellows, had a high sugar content and abundant foliage but in field trials its actual yield of sugar was no greater when infected, and lower when virus-free, than that of some other monogerm cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号