首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Grlich  N Pant  U Kutay  U Aebi    F R Bischoff 《The EMBO journal》1996,15(20):5584-5594
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.  相似文献   

2.
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1], [2], [3], [4]. Import receptors such as importin β or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin α/β heterodimer, coupled directly to importin β release from the NPCs. If the importin β –RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5], [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin–substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin–substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin–substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin β independently of Ran and energy.  相似文献   

3.
A GTPase distinct from Ran is involved in nuclear protein import   总被引:7,自引:0,他引:7       下载免费PDF全文
Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex.  相似文献   

4.
Kinetic competition experiments have demonstrated that at least some factors required for the nuclear import of proteins and U snRNPs are distinct. Both import processes require energy, and in the case of protein import, the energy requirement is known to be at least partly met by GTP hydrolysis by the Ran GTPase. We have compared the effects of nonhydrolyzable GTP analogues and two mutant Ran proteins on the nuclear import of proteins and U snRNPs in vitro. The mutant Ran proteins have different defects; Q69L (glutamine 69 changed to leucine) is defective in GTP hydrolysis while T24N (threonine 24 changed to asparagine) is defective in binding GTP. Both protein and snRNP import are sensitive either to the presence of the two mutant Ran proteins, which act as dominant negative inhibitors of nuclear import, or to incubation with nonhydrolyzable GTP analogues. This demonstrates that there is a requirement for a GTPase activity for the import of U snRNPs, as well as proteins, into the nucleus. The dominant negative effects of the two mutant Ran proteins indicate that the pathways of protein and snRNP import share at lease one common component.  相似文献   

5.
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

6.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

7.
NTF2 mediates nuclear import of Ran.   总被引:17,自引:1,他引:16       下载免费PDF全文
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.  相似文献   

8.
Identification of a Conserved Loop in Mog1 that Releases GTP from Ran   总被引:1,自引:0,他引:1  
Ran regulates nuclear import and export pathways by coordinating the assembly and disassembly of transport complexes. These transport reactions are linked to the GTPase cycle and subcellular distribution of Ran. Mog1 is an evolutionarily conserved nuclear protein that binds RanGTP and stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. In the present study, we have characterized the nuclear import pathway of Mog1, and we have defined the domain in Mog1 that stimulates GTP release from Ran. In permeabilized cells, nuclear import of Mog1 is independent of exogenously added factors, and is inhibited by wheat germ agglutinin, indicating that translocation of Mog1 involves physical interactions with the nuclear pore complex. In contrast to RanGEF, which is restricted to the nucleus, Mog1 shuttles between the nucleus and the cytoplasm. Single-point mutations in acidic residues of Mog1 (Asp25, Asp34, Glu37) dramatically reduce GTP release and Ran binding activity, whereas mutation of a single basic residue (Arg30) renders Mog1 hyperactive for GTP release. These mutations map within a conserved, solvent-exposed loop in Mog1 that is functionally similar to the β-wedge used by RanGEF to promote nucleotide release from Ran. These data suggest that Mog1 and RanGEF use similar mechanisms to facilitate guanine nucleotide release from Ran.  相似文献   

9.
Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin alpha/beta and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin beta and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.  相似文献   

10.
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.  相似文献   

11.
RanBP2/Nup358, the major component of the cytoplasmic filaments of the nuclear pore complex (NPC), is essential for mouse embryogenesis and is implicated in both macromolecular transport and mitosis, but its specific molecular functions are unknown. Using RanBP2 conditional knockout mouse embryonic fibroblasts and a series of mutant constructs, we show that transport, rather than mitotic, functions of RanBP2 are required for cell viability. Cre-mediated RanBP2 inactivation caused cell death with defects in M9- and classical nuclear localization signal (cNLS)-mediated protein import, nuclear export signal-mediated protein export, and messenger ribonucleic acid export but no apparent mitotic failure. A short N-terminal RanBP2 fragment harboring the NPC-binding domain, three phenylalanine-glycine motifs, and one Ran-binding domain (RBD) corrected all transport defects and restored viability. Mutation of the RBD within this fragment caused lethality and perturbed binding to Ran guanosine triphosphate (GTP)-importin-β, accumulation of importin-β at nuclear pores, and cNLS-mediated protein import. These data suggest that a critical function of RanBP2 is to capture recycling RanGTP-importin-β complexes at cytoplasmic fibrils to allow for adequate cNLS-mediated cargo import.  相似文献   

12.
《The Journal of cell biology》1996,133(6):1163-1176
Characterization of the interactions between soluble factors required for nuclear transport is key to understanding the process of nuclear trafficking. Using a synthetic lethal screen with the rna1-1 strain, we have identified a genetic interaction between Rna1p, a GTPase activating protein required for nuclear transport, and yeast importin- beta, a component of the nuclear localization signal receptor. By the use of fusion proteins, we demonstrate that Rna1p physically interacts with importin-beta. Mutants in importin-beta exhibit in vivo nuclear protein import defects, and importin-beta localizes to the nuclear envelope along with other proteins associated with the nuclear pore complex. In addition, we present evidence that importin-alpha, but not importin-beta, mislocalizes to the nucleus in cells where the GTPase Ran is likely to be in the GDP-bound state. We suggest a model of nuclear transport in which Ran-mediated hydrolysis of GTP is necessary for the import of importin-alpha and the nuclear localization signal- bearing substrate into the nucleus, while exchange of GDP for GTP on Ran is required for the export of both mRNA and importin-alpha from the nucleus.  相似文献   

13.
Mediated import of proteins into the nucleus involves multiple cytosolic factors, including the small GTPase Ran. Whether Ran functions by interacting with other cytosolic proteins or components of the nuclear pore complex has been unclear. Furthermore, the precise transport step where Ran acts has not been determined. To address these questions, we have analyzed the binding interactions of Ran using permeabilized cells and isolated nuclear envelopes. By light and electron microscope immunolocalization, we have found that Ran accumulates specifically at the cytoplasmic surface of the nuclear pore complex when nuclear import in permeabilized cells is inhibited by nonhydrolyzable analogs of GTP. Ran associates with a peripheral pore complex region that is similar to the area where transport ligands accumulate by depletion of ATP, which arrests an early step of transport. Binding studies with isolated nuclear envelopes in the absence of added cytosol indicate that Ran-GTP directly interacts with a pore complex protein. Using blot overlay techniques, we detected a single prominent polypeptide of isolated nuclear envelopes that binds Ran-GTP. This corresponds to the 358-kD protein RanBP2, a Ran binding pore complex protein recently identified by two-hybrid screening. Thus, RanBP2 is likely to constitute the Ran-GTP-binding site detected at the cytoplasmic periphery of the pore complex. These data support a model in which initial ligand binding to the nuclear pore complex occurs at or near RanBP2, and that hydrolysis of GTP by Ran at this site serves to define commitment to the nuclear import pathway.  相似文献   

14.
Background: The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin β family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate–receptor complexes through the NPC has generally been regarded as an energy-requiring step.Results: We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 – a nuclear export receptor – the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase.Conclusions: Our data show that, contrary to expectation and prior conclusions, the translocation of substrate–receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.  相似文献   

15.
The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of a glucocorticoid receptor-green fluorescent protein fusion (GR-GFP). Glucocorticoid receptor is cytosolic in the absence of ligand, but translocates to the nucleus on binding the agonist dexamethasone. After transfection into baby hamster kidney cells (BHK21), GR-GFP was detectable in living cells by direct fluorescence microscopy. Addition of dexamethasone caused a rapid translocation of the chimeric protein from the cytosol into the nucleus (t1/2 approximately 5 min). Cotransfection with epitope-tagged, wild- type Ran led to expression of HA1-Ran that was approximately 1.6-fold higher than the level of the endogenous protein, but it had no deleterious effect on nuclear import of the GR-GFP. However, expression of the Ran mutants G19V, T24N, or a COOH-terminal deletion (delta C) mutant dramatically reduced the accumulation of GR-GFP in the nuclei. An L43E mutant of Ran was without significant effect on nuclear GR-GFP import. Identical results were obtained following micro-injection of recombinant Ran mutants into cells expressing GR-GFP. Significantly, all of the Ran mutants, including L43E, strongly inhibited cell growth. These results demonstrate the use of GR-GFP in real-time imaging of nuclear transport. They also show that multiple types of Ran mutant exert dominant effects on this process, and that normal Ran function requires cycling between the GTP- and GDP-bound states of the protein. Most importantly, the results with the L43E Ran mutant provide strong evidence that Ran mediates a function essential to cell viability that is independent of nuclear protein import.  相似文献   

16.
The cytoplasmic disassembly of Ran.GTP.importin and Ran.GTP.exportin. cargo complexes is an essential step in the corresponding nuclear import and export cycles. It has previously been shown that such disassembly can be mediated by RanBP1 in the presence of RanGAP. The nuclear pore complex protein RanBP2 (Nup358) contains four Ran-binding domains (RanBDi) that might function like RanBP1. We used biophysical assays based on fluorescence-labeled probes and on surface plasmon resonance to investigate the dynamic interplay of Ran in its GDP- and GTP-complexed states with RanBDis and with importin-beta. We show that RanBP1 and the four RanBDis from RanBP2 have comparable affinities for Ran.GTP (10(8)-10(9) M(-1)). Deletion of Ran's C-terminal (211)DEDDDL(216) sequence weakens the interaction of Ran.GTP with RanBPis approximately 2000-fold, but accelerates the association of Ran.GTP with importin-beta 10-fold. Importin-beta binds Ran.GTP with a moderate rate, but attains a high affinity for Ran (K(D) = 140 pM) via an extremely low dissociation rate of 10(-5) s(-)(1). Association with Ran is accelerated 3-fold in the presence of RanBP1, which presumably prevents steric hindrance caused by the Ran C-terminus. In addition, we show that the RanBDis of RanBP2 are full equivalents of RanBP1 in that they also costimulate RanGAP-catalyzed GTP hydrolysis in Ran and relieve the GTPase block in a Ran.GTP.transportin complex. Our data suggest that the C-terminus of Ran functions like a loose tether in Ran.GTP complexes of importins or exportins that exit the nucleus. This flag is then recognized by the multiple RanBDis at or near the nuclear pore complex, allowing efficient disassembly of these Ran.GTP complexes.  相似文献   

17.
A new role for nuclear transport factor 2 and Ran: nuclear import of CapG   总被引:1,自引:0,他引:1  
The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin-permeabilized cells, neither GTPγS nor the GTP hydrolysis-deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2–Ran complex. NTF2–Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells.  相似文献   

18.
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.  相似文献   

19.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

20.
Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号