首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.  相似文献   

2.
This paper reports on the influence of independent variables in the pulping of holm oak wood [viz. temperature (135-195 degrees C), cooking time (30-90 min) and soda concentration (10-20%)] on the properties of the resulting paper sheets. By using a central composite factorial design and a fuzzy neural model, equations relating each dependent variable to the different independent variables were derived that reproduced the experimental results for the dependent variables with errors less than 14%. Using a soda concentration of 17.5% at 195 degrees C for 30 min, it is possible to reduce the working capital (cost of chemical) and the capital investment, because it is operated with smaller values of the soda concentration and cooking time that maximum considered (20% of soda concentration and 90 min). The pulp yield thus obtained differed by less than 31.3% from the highest possible value; also, the resulting pulp and paper sheets had acceptable properties that differed by less than 21.10% from their optimum values.  相似文献   

3.
The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.  相似文献   

4.
We studied the influence of the operational variables (viz. ethylene-glycol concentrations of 50-70%, temperatures of 155-185 degrees C, times of 30-90 min and numbers of PFI beating revolutions of 500-1500) on pulp yield and various paper properties (breaking length, stretch, burst index, tear index and brightness) obtained in the ethylene-glycol pulping of vine shoots, cotton stalks, leucaena (Leucaena leucocephala) and tagasaste (Chamaecytisus proliferus). The fuzzy neural network models used reproduced the experimental results with errors less than 15% and smaller than those provided by second-order polynomial models in all cases. An ethylene-glycol concentration of 65% at 180 degrees C for 75 min and 1500 PFI beating revolutions were found to provide substantial savings in energy, chemicals and facility investments as a result of operating under milder conditions than the strongest ones studied in this work. Tagasaste was found to be the most suitable raw material among those tested as it provided the paper sheets with the highest breaking length (4644 m), stretch (2.87%), burst index (2.46 kN/g), tear index (0.33 m Nm(2)/g) and brightness (40.92%); its pulp yield was also high (62.88%), which reflects efficient use of this raw material.  相似文献   

5.
The influence of operational variables in the pulping of vine shoots by use of ethylene glycol [viz. temperature (155-185 degrees C), cooking time (30-90 min) and ethylene glycol concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa number and viscosity) and paper sheets (breaking length, stretch, burst index, tear index and brightness) was studied. A central composite factorial design was used in conjunction with the software ANFIS Edit Matlab 6.5 to develop fuzzy neural model that reproduced the experimental results of the dependent variables with errors less than 5%. The model is therefore effective with a view to simulating the ethylene glycol pulping process.  相似文献   

6.
In this work, we examined the influence of operational variables [viz. Ethyleneglycol concentration (50-70%), temperature (155-185 degrees C), time (30-90 min) and number of PFI beating revolutions (500-1500)] in the ethyleneglycol pulping of tagasaste (Chamaecytisus proliferus) on pulp yield and the breaking length, stretch, burst index, tear index and brightness of paper sheets formed from it. Application of a fuzzy neural network model in combination with an experimental factorial design allowed the results for the dependent variables to be predicted as a function of the operating conditions used with errors less than 15% in all cases. The operating conditions of choice provided pulp with a high yield (56.85%) and a low brightness (22.51%) which may thus be useful to obtain non-white paper.  相似文献   

7.
The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 °C for 30 min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 °C and 155 °C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied.  相似文献   

8.
The aim of this work was to chemically characterize orange tree prunings and use it in pulping and combustion processes. Soda-anthraquinone pulping of the main fraction of orange pruning (stems with a diameter > 0.5 cm) was simulated with polynomial and neurofuzzy models, that predicted pulp properties as a function of operating variables (155-185°C, 40-90 min, soda concentration, 10-16%) with errors less than 20%. The heating values (16,870 kJ/kg), the flame temperature (1150-2150 °C) and dew point temperature of fuel gas (47-53 °C) for the residual fraction from orange pruning (stems diameter < 0.5 cm and leaves) was determined and compared with other non-wood lignocellulosic materials. As a consequence the price of kJ obtained by combustion of this residual fraction is less than other lignocellulosic materials, much lower than those of fossil fuels.  相似文献   

9.
The influence of soda-anthraquinone pulping variables (temperature, time and soda concentration) and beating (number of PFI beating revolution) of palm oil empty fruit bunches (EFB) on the resulting paper sheets was studied, with a view to identifying the optimum operating conditions. Equations were derived that reproduced the properties of the paper sheets with errors less than 10-12% in 90-95% of cases. An optimum compromise was found as regards operating conditions (15% soda, 170 degrees C, 70 min and 2400 number of PFI beating revolutions) that provided paper properties departing by less than 12% from their optimum values (59.63 Nm/g tensile index, 4.48% stretch, 4.17 kN/g burst index and 7.20 m Nm(2)/g tear index), and a beating grade of 47.5 degrees SR, acceptable to obtain paper sheets. Because these conditions involve a lower soda, temperature, time and beating than those required to maximize the studied paper properties, they can save chemical reagents, energy and immobilized capital for industrial facilities. On the other hand, the stretch properties of these pulp beaten are higher than those of others non-wood pulps, as wheat straw and olive wood.  相似文献   

10.
Paper sheets from olive tree wood pulp obtained by soda, sulphite or kraft pulping were studied to examine the influence of pulp beating on properties of the paper sheets.Paper sheets from kraft and sulphite pulps exhibited the highest resistance, and sulphite pulp the highest brightness. Soda pulp required more intensive beating than did kraft or sulphite pulps; in fact, the PFI beater had be operated at a 40–50% higher number of beating revolutions to obtain soda pulp with 70–80° SR.The breaking length, stretch, burst index and tear index of paper sheets obtained from kraft pulp, beaten to a Shopper–Riegler index of 70–80° SR were 20–30%, 30–50%, 50–60% and 15–35% higher, respectively, than those of sheets obtained from soda pulp.  相似文献   

11.
This paper reports on the influence of independent variables in the pulping of holm oak wood (Quercus ilex L.) [viz. temperature (135-195 degrees C), cooking time (30-90min) and soda concentration (10-20%)] on the yield, holocellulose content, alpha-cellulose content, brightness and viscosity of the resulting pulp. By using a central composite factorial design, equations relating each dependent variable to the different independent variables were derived that reproduced the experimental results for the dependent variables with errors less than 5-15% in all cases. The highest pulp yield (56.9%) was obtained with the lowest values of the operating variables. However, obtaining the optimum holocellulose content, alpha-cellulose content and viscosity (viz. 94.5%, 78.5% and 1395ml/g, respectively) entailed using values of the independent variables above their mean levels. Also, ensuring optimal brightness (viz. 24.3%) required using higher temperatures and soda concentrations. A compromise that saves equipment immobilized capital and about 25% of soda is using a soda concentration of 15% at 195 degrees C for 30min. The yield thus obtained differs by less than 29.5% from the highest level; also, the resulting holocellulose content, alpha-cellulose content and brightness differ by less than 12% from their respective optimum values.  相似文献   

12.
This paper will consider the influence of the temperature of autohydrolysis or hydrothermal process from Paulownia fortunei L. to obtain a valuable liquid phase and a suitable solid phase to produce pulp. The solid phase resulting of autohydrolysis was subjected to organosolv pulping process and formed paper sheets, analyzing the influence of operational variables (viz., ethanol concentration, temperature and pulping time) on the yield, viscosity, tensile index, burst index, tear index and brightness. Maximum glucose and xylose contents and minimum paper sheets characteristic loss have been obtained at 190 degrees C authohydrolysis temperature. Suitable characteristics of paper sheets and acceptable yield, viscosity and kappa number of pulp could be obtained by operating at 180 degrees C temperature, 30min pulping time and 20% ethanol concentration. Under those conditions sheets paper with 27.4% ISO brightness, 28.87Nm/g tensile index, 1.22kPam(2)/g burst index and 1.23kNm(2)/g tear index could be obtained.  相似文献   

13.
The influence of temperature in the hydrothermal treatment of sunflower stalks on the composition of the liquid fraction obtained was examined. The remaining solid fraction was subjected to ethanol pulping in order to obtain pulp that was used to produce paper sheets. The pulp was characterized in terms of yield, kappa index, viscosity, and cellulose, hemicellulose and lignin contents; and the paper sheets in terms of breaking length, stretch, burst index and tear index. Hydrothermal treatment of the raw material at 190 degrees C provided a liquid phase with maximal hemicellulose-derived oligomers and monosaccharide (glucose, xylose and arabinose) contents (26.9 and 4.2 g/L, respectively). Pulping the solid fraction obtained by hydrothermal treatment at 180 degrees C, with 70% ethanol at a liquid/solid ratio of 8:1 at 170 degrees C for 120 min provided pulp with properties on a par with those of soda pulp from the sunflower stalks, namely: 36.3% yield, 69.1% cellulose, 12.6% hemicellulose, 18.2% lignin and 551 ml/g viscosity. Also, paper sheets obtained from the ethanol pulp were similar in breaking length (3.8 km), stretch (1.23%), burst index (1.15 kN/g) and tear index (2.04 m Nm(2)/g) to those provided by soda pulp.  相似文献   

14.
A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.  相似文献   

15.
The influence of operational variables in the pulping of vine shoots by use of ethanolamine [viz. temperature (155-185 degrees C), cooking time (30-90min) and ethanolamine concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa index, viscosity and drainability) was studied. A central composite factorial design was used in conjunction with the software BMDP and ANFIS Edit Matlab 6.5 to develop polynomial and fuzzy neural models that reproduced the experimental results of the dependent variables with errors less than 10%. Both types of models are therefore effective with a view to simulating the ethanolamine pulping process. Based on the proposed equations, the best choice is to use values of the operational valuables resulting in near-optimal pulp properties while saving energy and immobilized capital on industrial facilities by using lower temperatures and shorter processing times. One combination leading to near-optimal properties with reduced costs is using a temperature of 180 degrees C and an ethanolamine concentration of 60% for 60min, to obtain pulp with a viscosity of 6.13% lower than the maximum value (932.8ml/g) and a drainability of 5.49% lower than the maximum value (71 (o)SR).  相似文献   

16.
The aim of this work was to study the effect of adding PS, AQ and NaBH(4) into kraft pulping with special attention given to NaBH(4). Kraft, kraft-AQ, PS, and kraft-NaBH(4) pulps were produced under the same cooking conditions and the pulps produced were compared in terms of pulp and paper properties. Kraft method was modified by adding 0.1% AQ, 4% PS and 2% and 4% NaBH(4) and the resultant pulps displayed an increase in pulp yield and reduction in both kappa number and screening rejects. On the other hand, there observed an increase in both pulp yield and kappa number when the kraft was modified to PS method. The benefits of NaBH(4) addition into kraft pulping was a significant reduction in kappa number and screening rejects and a significant increase in pulp yield. The most notable outcome of NaBH(4) was 66.6% increase in pulp brightness when 4% NaBH(4) was added into kraft pulping. Of unrefined pulps, unrefined kraft pulp displayed the highest strength of pulp, which is described as tear index at a constant tensile index. Of refined pulps, kraft-AQ showed the highest pulp strength when refined to 6000 and 12,000 revs in PFI mill.  相似文献   

17.
Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium.  相似文献   

18.
In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).  相似文献   

19.
Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).  相似文献   

20.
This paper applies the neural network method to establish an index arbitrage model and compares the arbitrage performances to that from traditional cost of carry arbitrage model. From the empirical results of the Nikkei 225 stock index market, following conclusions can be stated: (1) The basis will get enlarged for a time period, more profitability may be obtained from the trend. (2) If the neural network is applied within the index arbitrage model, twofold of return would be obtained than traditional arbitrage model can do. (3) If the T_basis has volatile trend, the neural network arbitrage model will ignore the peak. Although arbitrageur would lose the chance to get profit, they may reduce the market impact risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号