首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the rare allotetraploid Silene aegaea was inferred from plastid rps16 intron sequences, homoeologous copies of nuclear ribosomal internal transcribed spacer (ITS) sequences, and an intron from the nuclear gene coding for the second largest subunit of RNA polymerase II (RPB2). The nuclear DNA regions support the S. sedoides and S. pentelica lineages as most closely related to the two S. aegaea paralogues. A few recombinant ITS sequences were found, but as PCR recombination could be demonstrated, no true recombination could be demonstrated. No recombination was found in the RPB2 sequences. Plastid rps16 intron sequences strongly support S. pentelica as the maternal lineage. The strength of the approach of using homoeologous sequences of several loci is demonstrated, and its usefulness for the study of phylogenies of groups including polyploids is emphasized.  相似文献   

2.
The origin of the rare allotetraploid Silene aegaea was inferred from plastid rps16 intron sequences, homoeologous copies of nuclear ribosomal internal transcribed spacer (ITS) sequences, and an intron from the nuclear gene coding for the second largest subunit of RNA polymerase II (RPB2). The nuclear DNA regions support the S. sedoides and S. pentelica lineages as most closely related to the two S. aegaea paralogues. A few recombinant ITS sequences were found, but as PCR recombination could be demonstrated, no true recombination could be demonstrated. No recombination was found in the RPB2 sequences. Plastid rps16 intron sequences strongly support S. pentelica as the maternal lineage. The strength of the approach of using homoeologous sequences of several loci is demonstrated, and its usefulness for the study of phylogenies of groups including polyploids is emphasized.  相似文献   

3.
The Balkan Peninsula is known to be one of the most diverse and species-rich parts of Europe, but its biota has gained much less attention in phylogenetic and evolutionary studies compared to other southern European mountain systems. We used nuclear ribosomal internal transcribed spacer (ITS) sequences and intron sequences of the chloroplast gene rps16 to examine phylogenetic and biogeographical patterns within the genus Heliosperma (Sileneae, Caryophyllaceae). The ITS and rps16 intron sequences both support monophyly of Heliosperma, but the data are not conclusive with regard to its exact origin. Three strongly supported clades are found in both data sets, corresponding to Heliosperma alpestre, Heliosperma macranthum and the Heliosperma pusillum clade, including all other taxa. The interrelationships among these three differ between the nuclear and the plastid data sets. Hierarchical relationships within the H. pusillum clade are poorly resolved by the ITS data, but the rps16 intron sequences form two well-supported clades which are geographically, rather than taxonomically, correlated. A similar geographical structure is found in the ITS data, when analyzed with the NeighbourNet method. The apparent rate of change within Heliosperma is slightly higher for rps16 as compared to ITS. In contrast, in the Sileneae outgroup, ITS substitution rates are more than twice as high as those for rps16, a situation more in agreement with what has been found in other rate comparisons of noncoding cpDNA and ITS. Unlike most other Sileneae ITS sequences, the H. pusillum group sequences display extensive polymorphism. A possible explanation to these patterns is extensive hybridization and gene flow within Heliosperma, which together with concerted evolution may have eradicated the ancient divergence suggested by the rps16 data. The morphological differentiation into high elevation, mainly widely distributed taxa, and low elevation narrow endemics is not correlated with the molecular data, and is possibly a result of ecological differentiation.  相似文献   

4.
J Kaufmann  V Florian    A Klein 《Nucleic acids research》1992,20(22):5985-5989
The gene sequences of the second largest subunits of RNA polymerases I and II of Euplotes octocarinatus, RPA2 and RPB2, were determined and compared to the respective known sequences of Saccharomyces cerevisiae. The similarity of the derived polypeptide sequences permitted their assignment to the respective polymerases and allowed the comparison of the zinc binding regions. In frame TGA codons were detected, which are likely to encode conserved cysteinyl residues in the putative zinc-finger region of the RPA2 gene. They were also found in other positions in both the RPA2 and RPB2 genes. The RPB2 gene contains a 30 bp intron close to the 5'-end of its coding region. The 5'-ends of the coding regions of all three genes encoding the largest subunits of the three different polymerases were also analyzed. The zinc finger structures again show the use of TGA codons for conserved cysteinyl residues in two of the genes. An N-terminal intron is located in the RPB1 gene at a conserved position as compared to the respective genes of several other eucarya.  相似文献   

5.
We sampled and analyzed approximately 2900bp across the three loci from 54 taxa belonging to a taxonomically difficult group of Cortinarius subgenus Phlegmacium. The combined analyses of ITS and variable regions of RPB1 and RPB2 greatly increase the resolution and nodal support for phylogenies of these closely related species belonging to clades that until now have proven very difficult to resolve with the ribosomal markers, nLSU and ITS. We present the first study of the utility of variable regions of the genes encoding the two largest subunits of RNA polymerase II (RPB1 and RPB2) for inferring the phylogeny of mushroom-forming fungi in combination with and compared to the widely used ribosomal marker ITS. The studied region of RPB1 contains an intron of the size and variability of ITS along with many variable positions in coding regions. Though almost entirely coding, the studied region of RPB2 is more variable than ITS. Both RNA polymerase II genes were alignable across all taxa. Our results indicate that several sections of Cortinarius need redefinition, and that several taxa treated at subspecific and varietal level should be treated at specific level. We suggest a new section for the two species, C. caesiocortinatus and C. prasinocyaneus, which constitute a well-supported separate lineage. We speculate that sequence information from RNA polymerase II genes have the potential for resolving phylogenetic problems at several levels of the diverse and taxonomically very challenging genus Cortinarius.  相似文献   

6.
7.
8.
To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the second largest subunit of RNA polymerase II) and beta-tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truffle) pezizaceous genera. Analyses of the combined LSU, RPB2, and beta-tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 fine-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, confirming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased confidence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three-gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and beta-tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the beta-tubulin region. The results indicate that third codon positions in beta-tubulin are saturated, especially for sites that provide information about the deeper relationships. Nevertheless, almost all phylogenetic signal in beta-tubulin is due to third positions changes, with almost no signal in first and second codons, and contribute phylogenetic information at the "fine-scale" level within the Pezizaceae. The Pezizaceae is supported as monophyletic in analyses of the three-gene data set, but its sister-group relationships is not resolved with support. The results advocate the use of RPB2 as a marker for ascomycete phylogenetics at the inter-generic level, whereas the beta-tubulin gene appears less useful.  相似文献   

9.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

10.
Subtribe Archontophoenicinae belongs to Areceae, the largest of all palm tribes. It includes 15 species distributed in five genera, all found in the south‐western Pacific Region. Archontophoenicinae are rather homogeneous in morphology, making phylogenetic relationships problematic to reconstruct using morphological characters. In this study we investigated phylogenetic relationships in Archontophoenicinae based on all 15 species of the subtribe, using a combination of nine plastid and five nuclear DNA sequence markers. The plastid regions used were the coding rbcL, matK, ndhF and rpoC1 (exon 2) and the non‐coding rps16 intron, atpF‐atpH, psbK‐psbI, trnL‐trnF and trnQ‐rps16. The nuclear regions used were AG1, BRSC, ITS2, PRK and RPB2, which have all proved useful in palm systematics. We compared the phylogenetic hypotheses resulting from the plastid versus nuclear datasets, and combined both datasets to retrieve as much phylogenetic information as possible. Our results strongly support a clade composed of all species of Archontophoenix, Actinokentia, Chambeyronia and Kentiopsis, but raise the question of whether Actinorhytis, the fifth genus, should remain in Archontophoenicinae. Interspecific relationships in ‘core Archontophoenicinae’ still remain incompletely resolved, despite the gene and taxon sampling being substantially greater than in previous studies, and question the monophyly of the New Caledonian genera Chambeyronia and Kentiopsis. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 469–481.  相似文献   

11.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

12.
In an effort to establish a suitable alternative to the widely used 18S rRNA system for molecular systematics of fungi, we examined the nuclear gene RPB2, encoding the second largest subunit of RNA polymerase II. Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota. While the RPB2 and 18S rDNA phylogenies were highly congruent, the RPB2 phylogeny did result in much higher bootstrap support for all the deeper branches within the orders and for several branches between orders of the Ascomycota. There are several strongly supported phylogenetic conclusions. The Ascomycota is composed of three major lineages: Archiascomycetes, Saccharomycetales, and Euascomycetes. Within the Euascomycetes, plectomycetes, and pyrenomycetes are monophyletic groups, and the Pleosporales and Dothideales are distinct sister groups within the Loculoascomycetes. We confirm the placement of Neolecta within the Archiascomycetes, suggesting that fruiting body formation and forcible discharge of ascospores were characters gained early in the evolution of the Ascomycota. These findings show that a slowly evolving protein-coding gene such as RPB2 is useful for diagnosing phylogenetic relationships among fungi.  相似文献   

13.
A collection of 247 true morels (Morchella spp.) primarily from the Mediterranean and Aegean Regions of Southern Turkey, were analyzed for species diversity using partial RNA polymerase I (RPB1) and nuclear ribosomal large subunit (LSU) rDNA gene sequences. Based on the result of this initial screen, 62 collections representing the full range of genetic diversity sampled were subjected to multigene phylogenetic species recognition based on genealogical concordance (GCPSR). The 62-taxon dataset consisted of partial sequences from three nuclear protein-coding genes, RNA polymerase I (RPB1), RNA polymerase II (RPB2), translation elongation factor (EF1-α), and partial LSU rDNA gene sequences. Phylogenetic analyses of the individual and combined datasets, using maximum parsimony (MP) and maximum likelihood (ML), yielded nearly fully resolved phylogenies that were highly concordant topologically. GCPSR analysis of the 62-taxon dataset resolved 15 putative phylogenetically distinct species. The early diverging Elata (black morels) and Esculenta Clades (yellow morels) were represented, respectively, by 13 and two species. Because a Latin binomial can be applied with confidence to only one of the 15 species (Morchella semilibera), species were identified by clade (Mel for Elata and Mes for Esculenta) followed by a unique Arabic number for each species within these two clades. Eight of the species within the Elata Clade appear to be novel, including all seven species within the Mel-20-to-31 subclade and its sister designated Mel-25. Results of the present study provide essential data for ensuring the sustainability of morel harvests through the formulation of sound conservation policies.  相似文献   

14.
Sequence data from the low-copy nuclear genes encoding phosphoribulokinase (PRK) and the second largest subunit of RNA polymerase II (RPB2) are used to generate the first phylogenetic analysis of Chamaedorea (Arecaceae: Arecoideae: Chamaedoreeae), the largest neotropical genus of palms. The prevailing current taxonomy of Chamaedorea recognizes approximately 100 species in eight subgenera, all delimited using floral characters, which provide a useful starting point to explore species-level systematics. Sequence data from 63 species, including representatives of all eight subgenera, were analyzed using maximum parsimony and Bayesian inference optimality criteria. Genus Chamaedorea is resolved as monophyletic with strong support in all separate and combined analyses. The less species-rich subgenera are convincingly monophyletic and can be diagnosed using morphological synapomorphies. In contrast, the two largest subgenera, Chamaedorea and Chamaedoropsis, which are supposedly distinguishable from each other by the degree of connation in the staminate petals, are both resolved as highly polyphyletic. Several well supported monophyletic groups resolved by these gene regions have never before been proposed within Chamaedorea and are challenging to delimit using morphological criteria. Although PRK proved more informative than RPB2, both regions have strong utility for interpreting species-level relationships among the palms, which are notoriously recalcitrant subjects for molecular phylogenetic studies. In addition, a paralog of the target copy of PRK identified during the analysis represents a potentially valuable source of phylogenetic information for future studies.  相似文献   

15.
16.
17.
The Hawaiian endemic Silene are a small group of woody or semiwoody representatives from a large, predominantly herbaceous, species-rich genus. We here investigated the origin and number of introductions of the endemic Hawaiian Silene based on phylogenetic relationships inferred from DNA sequences from both the plastid (the rps16 intron) and the nuclear (ribosomal internal transcribed sequences, ITS, and intron 23 of the RPB2 gene) genomes. Silene antirrhina, a widespread weedy American annual, is strongly supported as sister to a monophyletic group consisting of the Hawaiian Silene, indicating a single colonization event. There are no obvious morphological similarities between S. antirrhina and any of the species of Hawaiian Silene. Our results suggest an American origin for the Hawaiian endemics because that would require only a single trans-ocean dispersal. Two of the Hawaiian endemics (S. struthioloides and S. hawaiiensis) that form a subclade in the analyses have evolved woodiness after introduction to the Hawaiian Islands. Our results contribute to other recent results based on molecular phylogenetics that emphasize the American continent as a source area for the Hawaiian flora and support a striking morphological radiation and evolution of woodiness from a single introduction to the archipelago.  相似文献   

18.
The Pleurotus eryngii species complex comprises at least six varieties (var. eryngii (DC.: Fr) Quel., ferulae Lanzi, elaeoselini Venturella et?al., nebrodensis (Inzenga) Sacc., tingitanus Lewinsohn et?al. and tuoliensis C.J. Mou). This species is unique among the genus Pleurotus because in nature it is found in association with certain species of the Apiaceae (Umbelliferae) and Asteraceae (Compositae) families. Sequences of partial regions of the translation elongation factor (EF1α) and RNA polymerase II (RPB2) genes were analyzed in order to detect nucleotide polymorphisms that might unequivocally distinguish varieties eryngii, ferulae, elaeoselini and nebrodensis. A phylogenetic analysis was also performed with an aim to establish phylogenetic relationships among those. Sequence analysis of the partial EF1α and RPB2 genes contained nucleotide polymorphisms able to unequivocally distinguish variety nebrodensis from the rest. However, distinction among eryngii, elaeoselini and ferulae was achieved only through the RPB2 gene. The phylogenetic analyses from the combined data sets (EF1α and RPB2) indicated that P. eryngii is a monophyletic group and that varieties eryngii, elaeoselini and ferulae are closely related. P. eryngii var. nebrodensis was placed in a distinct clade clearly differentiated from the other varieties but still monophyletic with the P. eryngii complex. The limited nucleotide variation in partial EF1α and RPB2 among varieties eryngii, ferulae and elaeoselini supports the placement of these groups as varieties and not species within the complex.  相似文献   

19.
Sequence divergence was estimated within noncoding sequences of both chloroplast DNA (cpDNA)trnL (UAA) intron and nuclear ribosomal DNA (nrDNA) internal transcribed spacer sequences (ITS1 and ITS2) for 10 species of the genusGentianaL. (Gentianaceae). Comparisons of evolutionary rates among these sequences (cpDNA versus nrDNA, ITS1 versus ITS2) were performed. It appears that sequence divergence is on average two to three times higher in ITSs than in thetrnL intron sequences and higher in ITS1 than in ITS2. Both the cpDNA intron and ITSs of nrDNA give concordant phylogenetic trees. However, the ITS-based phylogeny displays higher bootstrap values. At the intrageneric level, at least inGentiana,ITSs (especially ITS2) sequences seem to be more appropriate in the assessment of plant phylogenies. Nevertheless, the cpDNAtrnL intron seems to be preferable at the intergeneric level.  相似文献   

20.
Earlier molecular phylogenetic analyses based on nuclear small subunit ribosomal DNA (nSSU rDNA) suggest that the Zygomycota are polyphyletic within the Chytridiomycota. However, these analyses failed to resolve almost all interordinal relationships among basal fungi (Chytridiomycota and Zygomycota), due to lack of sufficient characters within the nSSU rDNA. To further elucidate the higher-level phylogeny of Zygomycota, we have sequenced partial RPB1 (DNA dependent RNA polymerase II largest subunit) and EF-1alpha (translation elongation factor 1 alpha) genes from 10 and 3 zygomycete fungi, respectively. Independent molecular phylogenetic analyses were performed based on each sequence by distance and maximum likelihood methods. Although deep phylogenetic relationships among basal fungi still remain poorly resolved using either gene, the RPB1-based phylogeny identified a novel monophyletic clade consisting of the Dimargaritales, Harpellales, and Kickxellales. This result suggests that regularly formed septa (cross walls that divide hyphae into segments) with a lenticular cavity are plesiomorphic for this clade, and indicates the importance of septal pore ultrastructure in zygomycete phylogeny. In addition, a peculiar mucoralean genus Mortierella, which was considered to be distantly related to the other Mucorales based on previous nSSU rDNA analyses, was resolved as the basal most divergence within the Mucorales, consistent with traditional phenotypic-based taxonomy. Although the taxa included in our analysis are restricted, the monophyly of each order suggested by nSSU rDNA phylogeny is supported by the present RPB1-based analysis. These results support the potential use of RPB1 as an alternative marker for fungal phylogenetic studies. Conversely, the overall fungal phylogeny based on EF-1alpha sequence is poorly resolved. A comparison of numbers of observed substitutions versus inferred substitutions within EF-1alpha indicates that this gene is much more saturated than RPB1. This result suggests that the EF-1alpha gene is unsuitable for resolving higher-level phylogenetic relationships within the Fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号