首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyamines are ubiquitous polycations that participate in cellular processes such as growth, differentiation and cell death. Among the different functions ascribed to these organic cations, the polyamine spermine is known to protect DNA from the damage produced by reactive oxygen species (ROS) generated by different agents including copper ions. We have found that spermine exerts opposite effects on DNA strand breakage induced by Fenton reaction depending on metal concentration. Whereas at low concentration of the transition metals, 10 microM copper or 50 microM Fe(II), 1 mM spermine exerted a protective role, at metal concentrations higher than 25 microM copper or 100 microM Fe(II), spermine stimulated DNA strand breakage. The promotion of the damage induced by spermine was independent of DNA sequence but decreased by increasing the ionic concentration of the media or by the presence of metal-chelating agents. Moreover, spermine did not increase the oxidation of 2-deoxyribose by metal/H2O2 when DNA was substituted by 2-deoxyribose as a target for damage. Our results corroborate that spermine may protect DNA and 2-deoxyribose from the damage induced by ROS but also demonstrate that under certain conditions spermine may promote DNA strand breakage. The fact that this promoting effect of spermine on ROS-induced damage was observed only in the presence of DNA suggests that this polyamine under certain conditions may facilitate the interaction of copper and iron ions with DNA leading to the formation of ROS in close proximity to DNA.  相似文献   

2.
8-oxoguanine (8-OG) is a biological marker of oxidative damage to DNA by reactive oxygen species. With the help of monoclonal antibodies to 8-OG, by the method of chemiluminescence enzyme immunoassay essential distinctions were found in formation and elimination of this damage to DNA in a liver and brain of mice exposed to 20 Gy of gamma-radiation. A spontaneous level of 8-OG in DNA of brain is much higher than in DNA of liver. Registered immediately after the exposure, the induction of 8-OG in DNA was approximately 3 times greater in brain than in liver. Elimination of 8-OG from DNA of both tissues proceeds more actively only during 30 min after the exposure, and the significant percentage (26-30%) of these damage is kept in DNA of the tissues for 3 hours after the exposure. The levels of lipidsoluble antioxidants, determined by the reaction with a stable free radical, in tissues of mice do not correlate with a quantity of 8-OG, arising in DNA spontaneously and under irradiation.  相似文献   

3.
The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were developed to assess the ability of organic and inorganic DNA adducts to convert to single-strand breaks (SSB) in pBR322 plasmid DNA in the presence of heat or piperidine. DNA adducts formed by methyl methanesulfonate, cisplatin, and chromic chloride were compared with those formed by reaction of uranyl acetate and ascorbate. Uranyl ion in the presence of ascorbate produced U–DNA adducts that converted to SSB on heating. Piperidine, which acted on DNA methylated by methyl methanesulfonate to convert methyl–DNA adducts to SSB, served in the opposite fashion as U–DNA adducts by decreasing the level of SSB. The observation that piperidine also decreased the gel shift for metal–DNA adducts formed by monofunctional cisplatin and chromic chloride was interpreted to suggest that piperidine served to remove U–DNA adducts. Radical scavengers did not affect the formation of uranium-induced SSB, suggesting that SSB arose from the presence of U–DNA adducts and not from the presence of free radicals. A model is proposed to predict how U–DNA adducts may serve as initial lesions that convert to SSB or AP sites. The results suggest that DU can act as a chemical genotoxin that does not require radiation for its mode of action. Characterizing the DNA lesions formed by DU is necessary to assess the relative importance of different DNA lesions in the formation of DU-induced mutations. Understanding the mechanisms of formation of DU-induced mutations may contribute to identification of biomarkers of DU exposure in humans.  相似文献   

4.
Abstract The formation of long-lived reactive protein species of bovine serum albumin (BSA), ovalbumin, casein and casein hydrolyzate with a half-life of 3-5 hours was shown using chemiluminescence induced by X-ray radiation. It was found that long-lived reactive protein species are capable of generating reactive oxygen species (ROS) (H(2)O(2), OH(?), HO(2)(?, 1)O(2)) in the aquatic environment over a long period of time in vitro. The interaction of X-ray-irradiated BSA with DNA in vitro led to the formation of 8-oxoguanine (8-oxo-7,8-dihydroguanine), a biomarker of oxidative damage to DNA. Some natural antioxidants are effective scavengers of ROS (inosine, tryptophan, methionine and ascorbate). They protect DNA from the action of long-lived reactive protein species leading to ROS generation and the formation of 8-oxoguanine. The intravenous injection of X-ray radiation-induced, long-lived reactive protein species to rats, as well as the peroral and intraperitoneal administration of these products to mice, gave rise to cytogenetic injuries in the cells of their red bone marrow through the formation of micronuclei in polychromatophilic erythrocytes. The administration of the same natural antioxidants used for in vitro experiments soon after irradiation made it possible to effectively eliminate the genotoxic action of oxidative stress caused by radiation-induced, long-lived reactive protein species. Our data represent clear evidence that the oxidative damage to proteins induced by X-rays is directly involved in the induction of a response to DNA damage in rodents.  相似文献   

5.
4-Aminobiphenyl (4-ABP) and its analogue, 2-aminobiphenyl (2-ABP), were examined for their ability to induce oxidative DNA damage in Hep G2 cells. Using the alkaline comet assay, we showed that 2-ABP and 4-ABP (25-200 microM) were able to induce the DNA damage in Hep G2 cells. With both compounds, formation of intracellular reactive oxygen species (ROS) was detected using flow cytometry analysis. Post-treatment of 2-ABP and 4-ABP-treated cells by endonuclease III (Endo III) or formamidopyrimidine-DNA glycosylase (Fpg) to determine the formation of oxidized pyrimidines or oxidized purines showed a significant increase of the extent of DNA migration. This indicated that oxidative DNA damage occurs in Hep G2 cells after exposure to 2-ABP and 4-ABP. This assumption was further substantiated by the fact that the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN), decreased DNA damage significantly. Furthermore, addition of the catalase (100 U/ml) caused a decrease in the DNA damage induced by 2-ABP or 4-ABP, indicating that H(2)O(2) is involved in ABP-induced DNA damage. Pre-incubation of the cells with the iron chelator desferrioxamine (DFO) (1mM) and with the copper chelator neocupronine (NC) (100 microM) also decreased DNA damage in cells treated with 200 microM 2-ABP or 200 microM 4-ABP, while the calcium chelator {1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester}(BAPTA/AM) (10 microM) decreased only DNA strand breaks in cells exposed to 4-ABP. This suggested that ions are involved in the formation of DNA strand breaks. Using RT-PCR and Western blotting, lower inhibition of the expression of the OGG1 gene and of the OGG1 protein was observed in cells treated with 4-ABP, and 2-ABP-treated cells showed a marked reduction in the expression of OGG1 gene and OGG1 protein. Taken together, our finding indicated the mechanisms of induced oxidative DNA damage in Hep G2 cell by 2-ABP and 4-ABP are different, although both tested compounds are isomers.  相似文献   

6.
Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells   总被引:1,自引:0,他引:1  
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.  相似文献   

7.
8.
《Free radical research》2013,47(10):1280-1290
Abstract

The formation of long-lived reactive protein species of bovine serum albumin (BSA), ovalbumin, casein and casein hydrolyzate with a half-life of 3–5 hours was shown using chemiluminescence induced by X-ray radiation. It was found that long-lived reactive protein species are capable of generating reactive oxygen species (ROS) (H2O2, OH?, HO2?, 1O2) in the aquatic environment over a long period of time in vitro. The interaction of X-ray-irradiated BSA with DNA in vitro led to the formation of 8-oxoguanine (8-oxo-7,8-dihydroguanine), a biomarker of oxidative damage to DNA. Some natural antioxidants are effective scavengers of ROS (inosine, tryptophan, methionine and ascorbate). They protect DNA from the action of long-lived reactive protein species leading to ROS generation and the formation of 8-oxoguanine. The intravenous injection of X-ray radiation-induced, long-lived reactive protein species to rats, as well as the peroral and intraperitoneal administration of these products to mice, gave rise to cytogenetic injuries in the cells of their red bone marrow through the formation of micronuclei in polychromatophilic erythrocytes. The administration of the same natural antioxidants used for in vitro experiments soon after irradiation made it possible to effectively eliminate the genotoxic action of oxidative stress caused by radiation-induced, long-lived reactive protein species. Our data represent clear evidence that the oxidative damage to proteins induced by X-rays is directly involved in the induction of a response to DNA damage in rodents.  相似文献   

9.
We previously reported that benzo[a]pyrene (BaP) and UVA radiation synergistically induced oxidative DNA damage via 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in vitro. The present study shows that microsomal BaP metabolites and UVA radiation potently enhance 8-OHdG formation in calf thymus DNA about 3-fold over the parent compound BaP. Utilization of various reactive oxygen species scavengers revealed that singlet oxygen and superoxide radical anion were involved in the 8-OHdG formation induced by microsomal BaP metabolites and UVA. Two specific BaP metabolites, benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (+/-) (anti) (BPDE) and BaP-7,8-dione, were further tested for synergism with UVA. BaP-7,8-dione showed an effect on 8-OHdG formation induced by UVA radiation that was similar to that of the parent BaP, whereas BPDE exhibited significantly higher induction of 8-OHdG than BaP. At as low as 0.5 microM, BPDE plus UVA radiation substantially increased 8-OHdG levels about 25-fold over the parent BaP. BPDE increased the formation of 8-OHdG levels in both BPDE concentration- and UVA dose-dependent manners. Additionally, singlet oxygen was found to play a major role in 8-OHdG induction by BPDE and UVA. These results suggest that BaP metabolites such as BPDE synergize with UVA radiation to produce ROS, which in turn induce DNA damage.  相似文献   

10.
Carcinogenic urethane (ethyl carbamate) forms DNA adduct via epoxide, whereas carcinogenic methyl carbamate can not. To clarify a mechanism independent of DNA adduct formation, we examined DNA damage induced by N-hydroxyurethane, a urethane metabolite, using 32P-5'-end-labeled DNA fragments. N-hydroxyurethane induced Cu(II)-mediated DNA damage especially at thymine and cytosine residues. DNA damage was inhibited by both catalase and bathocuproine, suggesting a role for H(2)O(2) and Cu(I) in DNA damage. Free (*) OH scavengers did not inhibit the DNA damage, although methional did inhibit it. These results suggest that reactive species, such as the Cu(I)-hydroperoxo complex, cause DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was increased by N-hydroxyurethane in the presence of Cu(II). When treated with esterase, N-hydroxyurethane induced 8-oxodG formation to a similar extent as that induced by hydroxylamine. Enhancement of DNA cleavages by endonuclease IV suggests that hydroxylamine induced depurination. Furthermore, hydroxylamine induced a significant increase in 8-oxodG formation in HL-60 cells but not in its H(2)O(2)-resistant clone HP 100 cells. o-Phenanthroline significantly inhibited the 8-oxodG formation in HL-60 cells, confirming the involvement of metal ions in the 8-oxodG formation by hydroxylamine. Electron spin resonance spectroscopy, utilizing Fe[N-(dithiocarboxy)sarcosine](3), demonstrated that nitric oxide (NO) was generated from hydroxylamine and esterase-treated N-hydroxyurethane. It is concluded that urethane may induce carcinogenesis through oxidation and, to a lesser extent, depurination of DNA by its metabolites.  相似文献   

11.
UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.  相似文献   

12.
Yao X  Zhong L 《Mutation research》2005,587(1-2):38-44
Perfluorooctanoic acid (C8HF15O2, PFOA) is widely used in various industrial fields for decades and it is environmentally bioaccumulative. PFOA is known as a potent hepatocarcinogen in rodents. But it is not yet clear whether it is also carcinogenic in humans, and the genotoxic effects of PFOA on human cells have not yet been examined. In this study, the genotoxic potential of PFOA was investigated in human hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and micronucleus (MN) assay. In order to clarify the underlying mechanism(s) we measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate as a fluorochrome. The level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) in PFOA-treated HepG2 cells. PFOA at 50-400 microM caused DNA strand breaks and at 100-400 microM MN in HepG2 cells both in a dose-dependent manner. Significantly increased levels of ROS and 8-OHdG were observed in these cells. We conclude that PFOA exerts genotoxic effects on HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS.  相似文献   

13.
It was studied on mice how prior whole body hyperthemia affects a colony-forming ability of bone marrow after gamma-irradiation. It was found that heating of the animals (42 degrees C, 10 min) 18-22 h before their total irradiation (4 Gy) increases 2-fold the level of CFUs8 and CFUs12 determined in the spleen exotest. The induced radioresistance correlated with accumulation of heat shock proteins, HSP70 and HSP25, in tissues of preheated mice. Injection of quercetin (a selective inhibitor of the heat shock protein synthesis) 0.5 h before the heating fully abolished both the subsequent heat shock protein accumulation and the rise in CFUs populations as compared with control. It is suggested that heat shock proteins, whose expression increases in response to hyperthermia, can play a role of endogenous radioprotectors. Possible mechanisms of their protective action under irradiation are discussed.  相似文献   

14.
Screen-printed carbon electrodes (SPCEs) have been investigated as possible sensors to identify gamma-irradiation induced oxidative damage in double stranded (ds) DNA. Studies were undertaken to explore the possibility of using both cyclic voltammetry and differential pulse voltammetry to identify changes due to oxidative damage. Initially, guanine, adenine and 8-oxoguanosine were examined and it was found possible to differentiate them from their voltammetric responses. The voltammetric response of 8-oxoguanosine was found to be linear over the concentration range 1-400 microM, with a slope of 0.0296 microA microM(-1) (R2 value of 0.9984), in the presence of 2mM concentrations of guanine and adenine. Investigations were made into harnessing these findings to identify oxidative damage in gamma-irradiated dsDNA. The presence of oxidative damage in these samples was readily identifiable, and the magnitude of the voltammetric response was found to be dose dependant (R2=0.9919). A simple sample preparation step involving only the dissolution of double stranded DNA sample in the optimised electrolyte (0.1M acetate buffer pH 4.5) was required. This report appears to be first describing the use of a SPCE to detect DNA damage which can be related to the dose of gamma-radiation used.  相似文献   

15.
With regard to a future use of tea polyphenols in intervention trials with individuals at high cancer risk, the effects of the tea ingredient (-)-epigallocatechin gallate (EGCG) on poly(ADP-ribose) (PAR) levels and on DNA damage were investigated in human lymphocytes. A dose- and time-dependent elevation of both PAR formation as assessed by quantitative immunofluorescence analysis and DNA damage as assessed by the comet assay were observed after treatment with EGCG at 20, 40 and 80 microM for 10-240 min. Maximum levels of PAR formation and of DNA damage were observed after 10 min at all concentrations tested. Increased PAR levels were still detectable by 240 min in the 40 and 80 microM groups. At the lowest concentration, which is near the physiological peak values found after tea ingestion, PAR formation was not correlated with DNA damage. Here, EGCG led to pronounced PAR levels, whereas the comet assay was almost negative. In contrast, such marked differences in time course and extent of both genotoxicity and PAR formation following EGCG treatment were not detected after gamma-irradiation. Our results suggest that the known chemopreventive effects of EGCG, the main constituent of tea, may be partly attributed to an induction of PAR formation.  相似文献   

16.
Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage.  相似文献   

17.
8-Hydroxyguanine (8-OH-Gua) is one of the major modified bases in DNA produced by oxidative damage. Human lung carcinoma cells (A549) were treated with 0.5-2mM sodium arsenite for 4h. By an immunohistochemical type procedure, 8-OH-Gua was clearly detected in A549 cells using a fluorescence microscope and an increase in the percentage of A549 cells with oxidative DNA damage was observed using flow cytometry. The formation of 8-OH-Gua in DNA was also detected by a HPLC-ECD. A dose-dependent increase in oxidative DNA damage in A549 cells with increasing arsenite concentrations was obtained. Therefore, oxidative stress is induced after arsenite treatment. Furthermore, we also found that arsenite decreased the activity of the 8-OH-Gua repair enzyme, hOGG1 (8-oxoguanine-DNA glycosylase 1) as well as its gene and protein expression. We conclude that the 8-OH-Gua level in cultured human cells increases partly by the generation of reactive oxygen species (ROS) and partly by the influence on hOGG1 expression, followed by the inhibition of the repair activity for 8-OH-Gua.  相似文献   

18.
To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence, mainly represented by temperature and heating time, affects the DNA degradation via DNA depurination followed by cleavage of nearby phosphodiesters. The heating time influence is temperature-dependent. By reactive oxygen species (ROS) scavenging and 1,3-diphenyl-isobenzofuran (DPBF) bleaching experiments the influence of oxygen on DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the thermal degradation of cellular DNA and isolated DNA showed that cellular lipids can aggravate DNA thermal degradation. These results confirm the possibility of gene amplification from thermally degraded DNA. They can be used to evaluate the feasibility of the retrieval of single gene from ancient remains.  相似文献   

19.
The catechol-mediated DNA damage in the presence of Cu(II) ions involves oxidation of guanine to 8-oxoguanine (8-oxoG) and DNA strand scission. It proceeds through the reactive oxygen species (ROS) generation. The mutagenicity of 8-oxoG lesions is due to its miscoding propensity reflected in GC→TA transversion taking place during the DNA repair process. To gain new insights into the nature of catechol-mediated DNA damage and its prevention, we have investigated the changes in DNA melting characteristics and 8-oxoG formation as the indicators of DNA damage in a model calf-thymus DNA system. A novel fluorescence method for DNA melting temperature determination, based on DAPI fluorescent-probe staining, has been proposed. The DNA melting-onset temperature has been found to be more sensitive to DNA damage than the standard melting temperature due to the increased width of the melting transition observed in oxidatively damaged DNA. We have found that the efficiency of Fenton cascade in generating DNA-damaging ROS is higher for catechol than for GSH, two strong antioxidants, mainly due to the much longer distance between ROS-generating radical group in GS to nucleobases than that of semiquinone radical group to nucleobases (2.1nm vs. 0.27nm), making the ROS transport from GSH an order of magnitude less likely to damage DNA because of short lifetime of HO radicals. The antioxidant and DNA-protecting behaviors of GSH have been elucidated. We have found that the redox potential of GSH/GSSG couple is lower than that of catechol/semiquinone couple. Hence, GSH keeps catechol in the reduced state, thereby shutting down the initial step of the catechol-mediated Fenton cascade. The catechol-induced DNA damage in the presence of Cu(II) ions has also been confirmed in studies of ON-OFF hairpin-oligonucleotide beacons.  相似文献   

20.
Yeast, as well as higher eukaryotes, are induced to increase thermal resistance (thermotolerance) by prior exposure to a heat stress. Prior exposure to an acute dose of either 60Co gamma or 254-nm ultraviolet radiation, at sublethal or fractionally lethal doses, is shown to cause a marked increase in the resistance of Saccharomyces cerevisiae to killing by heat. Following a radiation exposure, thermal resistance increased with time during incubation in nutrient medium, and the degree of resistance reached was proportional to the dose received. Partial induction by radiation followed by maximum induction by heat did not produce an additive response when compared to a maximum induction by heat alone, suggesting that the same process was induced by both heat and radiation. Irradiation with 254-nm uv light followed by an immediate, partial photoreversal of the pyrimidine dimers with long-wavelength uv light resulted in a reduced level of resistance compared to cells not exposed to the photoreversal light, indicating that the cells specifically recognized pyrimidine dimers as a signal to increase their thermal resistance. Exposure to 254-nm uv or ionizing radiation induced thermal resistance in mutants defective in either excision repair (rad3, uv-sensitive) or recombinational repair (rad52, gamma-sensitive), suggesting that recognition and repair of DNA damage by these systems are not a part of the signal which initiates an increase in resistance to heat. The amount of induction, per unit dose, was greater in the DNA repair-deficient mutants than in the wild-type cells, suggesting that an increase in the length of time during which damage remains in the DNA results in an increase in the effectiveness of the induction. These data indicate that types of DNA damage as diverse as those produced by ionizing radiation and by ultraviolet light are recognized as a signal by the yeast cell to increase its thermal resistance. It is therefore suggested that heat-induced alterations in DNA or in DNA-dependent chromosomal organization may be the signal for heat induction of thermotolerance in this and other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号