首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to balance osmotic pressure and has very acidic proteins. We thus believe that Sr PYP is an example of a halophilic protein that requires KCl to electrostatically screen the excess negative charge and stabilize the tertiary structure.  相似文献   

2.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a constitutive salt-dependent nicotinamide adenine dinucleotide phosphate (NADP)-linked glucose-6-phosphate dehydrogenase. Glucose dehydrogenase and fructose-1,6-bisphosphate aldolase activity could not be detected. It is therefore suggested that Salinibacter metabolizes glucose by the classic Entner-Doudoroff pathway and not by the Embden-Meyerhof glycolytic pathway or by the modified Entner-Doudoroff pathway present in halophilic Archaea of the family Halobacteriaceae, in which the phosphorylation step is postponed. However, activity of 2-keto-3-deoxy-6-phosphogluconate aldolase could not be detected in extracts of Salinibacter cells, whether or not grown in the presence of glucose.  相似文献   

3.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by glycerol. In contrast to glucose consumption, which starts only after more easily degradable substrates present in yeast extract have been depleted, glycerol is consumed during the earliest growth phases. When U-(14)C-labeled glycerol was added to the culture, up to 25% of the radioactivity was incorporated by the cells. Glycerol kinase activity was detected only in cells grown in the presence of glycerol (up to 90 nmol mg protein(-1) min(-1)). This enzyme functioned over salt concentrations from 0.6 to 2.8 M KCl. No significant activity of NAD-dependent glycerol dehydrogenase was found. It is suggested that Salinibacter may use glycerol as one of its principal substrates in its habitat, the saltern crystallizer ponds.  相似文献   

4.
Salinibacter ruber is an extremely halophilic bacterium, phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria. Electrospray mass analyses (negative ion) of the total lipid extract of a pure culture of S. ruber shows a characteristic peak at m/z 660 as the most prominent peak in the high-mass range of the spectrum. A novel sulfonolipid, giving rise to the molecular ion [M-H]- of m/z 660, has been identified. The sulfonolipid isolated and purified by thin-layer chromatography was shown by chemical degradation, mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance analysis to have the structure 2-carboxy-2-amino-3-O-(13'-methyltetradecanoyl)-4-hydroxy-18-methylnonadec-5-ene-1-sulfonic acid. This lipid represents about 10% of total cellular lipids, and it appears to be a structural variant of the sulfonolipids found as main components of the cell envelope of gliding bacteria of the genus Cytophaga and closely related genera (W. Godchaux and E. R. Leadbetter, J. Bacteriol. 153:1238-1246, 1983) and of diatoms (R. Anderson, M. Kates, and B. E. Volcani, Biochim. Biophys. Acta 528:89-106, 1978). Since this sulfonolipid has never been observed in any other extreme halophilic microorganism, we consider the peak at m/z 660 the lipid signature of Salinibacter. This study suggests that this novel sulfonolipid may be used as a chemotaxonomic marker for the detection of Salinibacter within the halophilic microbial community in saltern crystallizer ponds and other hypersaline environments.  相似文献   

5.
Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes.  相似文献   

6.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Delta9cis and C18:1 Delta11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

7.
The extremely halophilic bacterium Salinibacter ruber was previously shown to have a high intracellular potassium content, comparable to that of halophilic Archaea of the family Halobacteriaceae. The amino acid composition of its bulk protein showed a high content of acidic amino acids, a low abundance of basic amino acids, a low content of hydrophobic amino acids, and a high abundance of serine. We tested the level of four cytoplasmic enzymatic activities at different KCl and NaCl concentrations. Nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase functioned optimally at 0.5-2 M KCl, with rates of 60% of the optimum value at 3.3 M. NaCl provided less activation: 70% of the optimum rates in KCl were found at 0.2-1.2 M NaCl, and above 3 M NaCl, activity was low. We also detected nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate activity, which remained approximately constant between 0-3.2 M NaCl and increased with increasing KCl concentration. NAD-dependent malate dehydrogenase functioned best in the absence of salt, but rates as high as 25% of the optimal values were measured in 3-3.5 M KCl or NaCl. NAD-dependent glutamate dehydrogenase, assayed by the reductive amination of 2-oxoglutarate, showed low activity in the absence of salt. NaCl was stimulatory with optimum activity at 3-3.5 M. However, no activity was found above 2.5 M KCl. Although the four activities examined all function at high salt concentrations, the behavior of individual enzymes toward salt varied considerably. The results presented show that Salinibacter enzymes are adapted to function in the presence of high salt concentrations.  相似文献   

8.
D-Lactate dehydrogenase from the extreme halophilic archaebacterium Halobacterium marismortui has been partially purified by ammonium-sulfate fractionation, hydrophobic and ion exchange chromatography. Catalytic activity of the enzyme requires salt concentrations beyond 1M NaCl: optimum conditions are 4M NaCl or KCl, pH 6-8, 50 degrees C. Michaelis constants for NADH and pyruvate under optimum conditions of enzymatic activity are 0.070 and 4.5mM, respectively. As for other bacterial D-specific lactate dehydrogenases, fructose 1,6-bisphosphate and divalent cations (Mg2+, Mn2+) do not affect the catalytic activity of the enzyme. As shown by gel-filtration and ultracentrifugal analysis, the enzyme under the conditions of the enzyme assay is a dimer with a subunit molecular mass close to 36 kDa. At low salt concentrations (less than 1M), as well as high concentrations of chaotropic solvent components and low pH, the enzyme undergoes reversible deactivation, dissociation and denaturation. The temperature dependence of the enzymatic activity shows non-linear Arrhenius behavior with activation energies of the order of 90 and 25 kJ/mol at temperatures below and beyond ca. 30 degrees C. In the presence of high salt, the enzyme exhibits exceptional thermal stability; denaturation only occurs at temperatures beyond 55 degrees C. The half-time of deactivation at 70 and 75 degrees C is 300 and 15 min, respectively. Maximum stability is observed at pH 7.5-9.0.  相似文献   

9.
A new enzyme showing a dehydrogenase activity towards aromatic aldehydes was isolated, purified and characterized from a halophilic strain isolated from saline environment. The enzyme is a monomer of 54 kDa; it is rather thermostable (optimal temperature: 50 degrees C) showing a broad spectrum of activity in a large pH range with the maximum at pH 9.5. The substrate specificity and the effect of ions were evaluated and compared with analogous described proteins.  相似文献   

10.
High-pressure adaptation was examined using a moderately halophilic bacterium (Micrococcus roseus), which was isolated from open seawater and capable of growing in 15% w/v NaCl (optimum NaCl concentration: 3% w/v). After treatment at 207 MPa, colony-forming units (CFUs) significantly decreased; however, the loss of integral cells after pressure was only 30% when direct cell count was performed microscopically. In order to investigate the piezotolerance of M. roseus under high pressure without morphological change, the survival of cells was examined under pressure at 138 MPa for 2 h. M. roseus in 3% NaCl was still sensitive to pressure at 138 MPa. However, the cells in the third generations showed remarkably increased pressure resistance, and no significant loss of viability was confirmed. Furthermore, when M. roseus was cultured in 1, 3, 5, 10 and 15% NaCl, the survival ratio proportionally increased at increased NaCl concentration. M. roseus cultured in 15% NaCl was remarkably resistant (94.7% viability) to pressure at 138 MPa, even when suspended in lower concentration of NaCl. This suggests that NaCl concentrations in growth culture affect the piezotolerance of M. roseus and that this species has an ability to adapt to high pressure.  相似文献   

11.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

12.
The structure and solvent interactions of malate dehydrogenase from Halobacterium marismortui in multimolar KCl solvents are found to be similar to those in multimolar NACl solvents reported previously (G. Zaccai, E. Wachtel and H. Eisenberg, J. Mol. Biol. 190 (1986) 97). KCl rather than NaCl is predominant in physiological medium. At salt concentrations up to about 3.0 M, the protein (a dimer of M 87000 g/mol) can be considered to occupy an invariant volume in which it is associated with about 4100 molecules of water and about 520 molecules of salt. At very low resolution, the enzyme particle appears to have a compact protein core and protruding protein parts in interaction with the water and salt components, structural features that are not observed in non-halophilic mitochondrial malate dehydrogenase. The above conclusions were drawn from the analysis of neutron scattering and ultracentrifugation data, and the complementarity of these approaches is discussed extensively.  相似文献   

13.
Electrophoretically homogenous isoforms of malate dehydrogenase with different quaternary structure were prepared from Rhodopseudomonas palustris strain f8pt cultured photolithoheterotrophically on malate and acetate. By selective inhibition of the tricarboxylic acid cycle or glyoxylate cycle, it was shown that the dimeric isoform of the enzyme is responsible for Krebs cycle functioning and the tetrameric isoform is involved in functioning of the glyoxylate cycle.  相似文献   

14.
Crystals of the high-potential iron-sulfur protein from Ectothiorhodospira halophila strain BN 9626 have been grown from 3.4 to 3.5 M ammonium sulfate solutions at pH 7.5. The crystals belong to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. There are 2 molecules/asymmetric unit. The crystals diffract to at least 1.8 A, are stable in the x-ray beam, and are suitable for a high resolution x-ray crystallographic analysis.  相似文献   

15.
Halobacterium salinarum sensory rhodopsin I (HsSRI), a dual receptor regulating both negative and positive phototaxis in haloarchaea, transmits light signals through changes in protein-protein interactions with its transducer, halobacterial transducer protein I (HtrI). Haloarchaea also have another sensor pigment, sensory rhodopsin II (SRII), which functions as a receptor regulating negative phototaxis. Compared with HsSRI, the signal relay mechanism of SRII is well characterized because SRII from Natronomonus pharaonis (NpSRII) is much more stable than HsSRI and HsSRII, especially in dilute salt solutions and is much more resistant to detergents. Two genes encoding SRI homologs were identified from the genome sequence of the eubacterium Salinibacter ruber. Those sequences are distantly related to HsSRI ( approximately 40% identity) and contain most of the amino acid residues identified as necessary for its function. To determine whether those genes encode functional protein(s), we cloned and expressed them in Escherichia coli. One of them (SrSRI) was expressed well as a recombinant protein having all-trans retinal as a chromophore. UV-Vis, low-temperature UV-Vis, pH-titration, and flash photolysis experiments revealed that the photochemical properties of SrSRI are similar to those of HsSRI. In addition to the expression system, the high stability of SrSRI makes it possible to prepare large amounts of protein and enables studies of mutant proteins that will allow new approaches to investigate the photosignaling process of SRI-HtrI.  相似文献   

16.
C Ebel  P Faou  B Kernel  G Zaccai 《Biochemistry》1999,38(28):9039-9047
Halophilic malate dehydrogenase unfolds at low salt, and increasing the salt concentration stabilizes, first, the folded form and then, in some cases, destabilizes it. From inactivation and fluorescence measurements performed on the protein after its incubation in the presence of various salts in a large range of concentrations, the apparent effects of anions and cations were found to superimpose. A large range of ions was examined, including conditions that are in general not of physiological relevance, to explore the physical chemistry driving adaptation to extreme environments. The order of efficiency of cations and anions to maintain the folded form is, for the low-salt transition, Ca(2+) approximately Mg(2+) > Li(+) approximately NH(4)(+) approximately Na(+) > K(+) > Rb(+) > Cs(+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-), and for the high-salt transition, NH(4)(+) approximately Na(+) approximately K(+) approximately Cs(+) > Li(+) > Mg(2+) > Ca(2+), and SO(4)(2)(-) approximately OAc(-) approximately F(-) > Cl(-) > Br(-) > I(-). If a cation or anion is very stabilizing, the effect of the salt ion of opposite charge is limited. Anions of high charge density are always the most efficient to stabilize the folded form, in accordance with the order found in the Hofmeister series, while cations of high charge density are the most efficient only at the lower salt concentrations and tend to denature the protein at higher salt concentrations. The stabilizing efficiency of cations and anions can be related in a minor way to their effect on the surface tension of the solution, but the interaction of ions with sites only present in the folded protein has also to be taken into account. Unfolding at high salt concentrations corresponds to interactions of anions of low charge density and cations of high charge density with the peptide bond, as found for nonhalophilic proteins.  相似文献   

17.
Malate dehydrogenase (EC 1.1.1.37) was purified to homogeneity from the phototrophic purple non-sulfur bacterium Rhodovulum steppense A-20s. According to gel-chromatography and electrophoretic studies, malate dehydrogenase is present as a dimer, tetramer and octamer depending on cultivation conditions. In phototrophic aerobic conditions only the tetrameric form was present, in chemotrophic aerobic conditions all three forms were detected, while in the absence of oxygen the octameric form disappeared. The malate dehydrogenase oligomers are encoded by a single gene and composed of the same 35 kDa polypeptide but differ in pH and temperature optimum, in affinities to malate, oxaloacetate, NADH and NAD+ and in regulation by cations and citrate. By modulating the cultivation conditions, it has been established that the dimer participates in the glyoxylate cycle; the tetramer operates in the tricarboxylic acid cycle, and the octamer may be involved in the adaptation to oxidative stress.  相似文献   

18.
A halophilic alkaline phosphatase was highly purified (about 510-fold with about 21% yield) from a moderate halophile, Halomonas sp. 593. The N-terminal 35 amino acid sequence of this enzyme was found to be more acidic than those previously isolated from Vibrio spp., and this enzyme was partially resistant to SDS. Several enzymatic properties demonstrated that it showed higher halophilicity than those enzymes from Vibrio spp.  相似文献   

19.
Previous biophysical studies of tetrameric malate dehydrogenase from the halophilic archaeon Haloarcula marismortui (Hm MalDH) have revealed the importance of protein-solvent interactions for its adaptation to molar salt conditions that strongly affect protein solubility, stability, and activity, in general. The structures of the E267R stability mutant of apo (-NADH) Hm MalDH determined to 2.6 A resolution and of apo (-NADH) wild type Hm MalDH determined to 2.9 A resolution, presented here, highlight a variety of novel protein-solvent features involved in halophilic adaptation. The tetramer appears to be stabilized by ordered water molecule networks and intersubunit complex salt bridges "locked" in by bound solvent chloride and sodium ions. The E267R mutation points into a central ordered water cavity, disrupting protein-solvent interactions. The analysis of the crystal structures showed that halophilic adaptation is not aimed uniquely at "protecting" the enzyme from the extreme salt conditions, as may have been expected, but, on the contrary, consists of mechanisms that harness the high ionic concentration in the environment.  相似文献   

20.
Three soluble cytochromes were found in two strains of the halophilic non-sulfur purple bacterium Rhodospirillum salexigens. These are cytochromes C2, C and c-551. Cytochrome C2 was recognized by the presence of positive charge at the site of electron transfer (measured by laser flash photolysis), although the protein has an overall negative charge (pI = 4.7). Cytochrome C2 has a high redox potential (300 mV) and is monomeric (13 kDa). Cytochrome c was recognized from its characteristic absorption spectrum. It has a redox potential of 95 mV, an isoelectric point of 4.3, and is isolated as a dimer (33 kDa) of identical subunits (14 kDa), a property which is typical of this family of proteins. R. salexigens cytochrome c-551 has an absorption spectrum similar to the low redox potential Rb. sphaeroides cytochrome c-551.5. It also has a low redox potential (-170 mV), is very acidic (pI = 4.5), and is monomeric (9 kDa), apparently containing 1 heme per protein. The existence of abundant membrane-bound cytochromes c-558 and c-551 which are approximately half reduced by ascorbate and completely reduced by dithionite suggests the presence of a tetraheme reaction center cytochrome in R. salexigens, although reaction centers purified in a previous study (Wacker et al., Biochim. Biophys. Acta (1988) 933, 299-305) did not contain a cytochrome. The most interesting observation is that R. salexigens contains a photoactive yellow protein (PYP), previously observed only in the extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila. The R. salexigens PYP appears to be slightly larger than that of Ec. halophila (16 kDa vs. 14 kDa). Otherwise, these two yellow proteins have similar absorption spectra, chromatographic properties and kinetics of photobleaching and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号