首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunization of DBA/2 (H-2d) mice with syngeneic P815 tumor cell transfectants that express HLA class I genes elicits CTL that recognize HLA in the context of H-2Kd molecules. Anti-HLA-CW3 CTL cross-react to a variable extent on the related alleles A3 and A24. Using a panel of target cells expressing native or recombinant HLA genes, we could map the epitope recognized by a CTL clone specific for CW3 to the second external (alpha 2) domain of CW3. Moreover, the epitope recognized by this clone could be mimicked by incubating P815 (HLA negative) target cells with a synthetic peptide corresponding to the C-terminal 12 amino acids of the CW3 alpha 2 domain (residues 171 to 182). Other independent anti-CW3 CTL clones with different fine specificities recognized the same CW3 peptide. In contrast, CTL clones specific for HLA-A24 or HLA-A3 that did not lyse P815-CW3 transfectants did not recognize this peptide. The CW3 peptide could be recognized on other tumor cell targets that were also of H-2d origin, but not on those of H-2b or H-2k origin. The requirement for the expression of H-2Kd by the target cells was directly demonstrated using L cell Kd transfectants. Our results suggest that the CTL response of DBA/2 mice immunized with P815-CW3 transfectants is predominantly Kd restricted and focused on epitopes contained within the 12 C-terminal amino acids of the alpha 2 domain.  相似文献   

2.
The residues in an influenza nucleoprotein (NP) cytotoxic T cell determinant necessary for cytotoxic T cell (CTL) recognition, were identified by assaying the ability of hybrid peptides to sensitize a target cell to lysis. The hybrid peptides were formed by substituting amino acids from one determinant (influenza NP 147-158) for the corresponding residues of a second peptide (HLA CW3 171-182) capable of binding to a common class I protein (H-2Kd). Six amino acids resulted in partial recognition; however, the presence of a seventh improved the potency of the peptide. Five of the six amino acids were shown to be required for recognition. The spacing of the six amino acids was consistent with the peptide adopting a helical conformation when bound. The importance of each amino acid in CTL recognition and binding to the restriction element was investigated further by assaying the ability of peptides containing point substitutions either to sensitize target cells or to compete with the natural NP sequence for recognition by CTL. The T cell response was much more sensitive to substitution than the ability of the peptide to bind the restriction element. Collectively the separate strategies identified an approximate conformation and orientation of the peptide when part of the complex and permitted a potential location in the MHC binding site to be identified. The model provides a rationalization for analogues which have previously been shown to exhibit greater affinity for the class I molecule and suggests that the binding site in major histocompatibility complex (MHC) class I molecules might have greater steric constraints that the corresponding area of class II proteins.  相似文献   

3.
Previous studies have shown that the lymphocytes of naive mice produce a strong primary CTL responses in vitro to human MHC class I Ag presented by HLA-transgenic mouse (TGM) cells. A limiting dilution (LD) assay was used to analyze this xenoreactive CTL repertoire in mice. Frequencies of HLA class I-specific CTL precursors (CTLp) were estimated in naive normal and HLA-B27.2-, -B27.5- and HLA-Cw3-double TGM (i.e., mice expressing HLA and human beta 2-microglobulin (hu beta 2m]. The xenoreactive CTLp frequencies were compared to frequencies of CTLp to H-2 alloantigens estimated in naive normal mice. The results showed that the frequencies of HLA class I-specific CTLp are comparable with those of alloreactive CTLp. This overlap in CTLp frequencies suggests that HLA class I xenoantigens are recognized by primary mouse CTL as allelic variants of H-2K and H-2D. This was confirmed in split well analysis by the observation that the xenoreactive response was not restricted by self-MHC of the responding mouse. Thus, primary HLA class I-specific mouse CTL clones recognized their target Ag regardless of whether they were expressed on H-2-mismatched mouse cells or on human cells. The frequencies of HLA class I-specific CTLp in HLA-TGM were comparable to those in normal mice. We propose that MHC allo- and xenoreactive CTL responses are not caused by the activation of CTLp specific for self-MHC plus peptide but to the activation of CTLp recognizing MHC allo- and xenoantigens directly or as peptides presented by their native MHC molecules.  相似文献   

4.
To identify epitopes recognized by alloreactive CTL we have examined H-2Kb-specific CTL for their recognition of synthetic peptides with sequences derived from the native Kb class I molecule. Consecutive nested peptides spanning the immunogenic alpha 1 and alpha 2 domains of Kb were tested for their capacity to inhibit CTL clones in their recognition of cells expressing the native Kb molecule. Inhibition by these peptides was found to be an extremely rare event. One peptide (Kb.111-122) did inhibit recognition by one particular CTL clone, clone 13. Upon further investigation it was observed that clone 13 also recognized peptide Kb.111-122 when presented in the context of the syngeneic MHC molecule, Kd. Considering that residues 111 to 122 are located at the base of the antigen groove, and clone 13 is able to recognize Kb.111-122 when presented by syngeneic target cells, we suggest that inhibition of this CTL clone may be due to MHC restricted, self-presentation of peptide rather than to direct binding of free peptide to the TCR. Taken together, these results suggest inhibition of allospecific CTL by MHC peptides is a rare event at least for Kb recognition. Furthermore, they demonstrate the need for caution when interpreting inhibition by peptide as evidence for recognition by the TCR of the corresponding region on the native molecule.  相似文献   

5.
Mice immunized with syngeneic cells transfected with cloned genes coding for HLA class I molecules could recognize the human MHC Ag in the context of their own H-2 molecules. We obtained CTL clones from DBA/2 mice (H-2d) which had been immunized with P815 cells (a mastocytoma of DBA/2 origin) expressing either HLA-A2 or HLA-A3 or two different molecules containing recombined sequences of HLA-A2 and HLA-A3. Fourteen of these clones recognized a synthetic peptide corresponding to the region 170-185 of HLA-A2 in the context of H-2Kd. Moreover, from their activity on P815 cells expressing HLA-Cw3, two subpatterns could be distinguished: subpattern Cw3+, defined by those clones which lysed P815-Cw3, and subpattern Cw3- defined by those clones which did not lyse P815-Cw3. By testing the activity of clones of each subpattern on a series of modified synthetic peptides, we were able to define two epitopes on the same 170-185 peptide of HLA-A2. One of them was dependent on amino acids at positions 173 and 177, whereas the other was dependent on amino acid 177 alone. By using competition experiments, we were also able to define an agretopic region strongly dependent on the amino acid at position 178. Furthermore, experiments with L cells expressing molecules containing recombined sequences between H-2Kd and H-2Dd demonstrated the determinant role of residues 152, 155, and 156 from H-2Kd in the presentation to murine T cells of the 170-185 peptide of HLA-A2.  相似文献   

6.
Viral epitopes that are recognized by both HLA class I-restricted and class II-restricted T cells have been defined for a type A influenza virus nucleoprotein (NP) peptide. CD8+ and CD4+ CTL lines have been generated against a synthetic peptide encompassing residues 335 to 349 of NP that are restricted by HLA-B37 and HLA-DQw5, respectively. Both of these CTL populations were capable of specifically lysing influenza A virus-infected targets, indicating that a naturally processed NP peptide(s) was being mimicked by the NP (335-349) peptide. Amino acid residues that are critical for recognition of this NP determinant in the context of HLA-B37 and HLA-DQw5 were investigated by the use of panels of truncated and alanine-substituted NP peptides. The results demonstrate that: 1) truncations in the amino- or carboxy-terminal ends differentially affect CD8+ and CD4+ CTL recognition; 2) the NP (335-349) sequence contains two octapeptide epitopes that share a core of six amino acid residues (NP 338-343); and 3) alanine substitutions at five of these residues abrogated recognition by at least one of the CD8+ and CD4+ CTL lines. Thus, these class I- and class II-restricted CTL lines recognize similar but distinct epitopes, and different structural features of the NP peptide are required for presentation by HLA-B37 and HLA-DQw5. Comparison of the amino acid sequences of the NP peptide presented by HLA-B37 and HLA-DQw5 with other peptides known to be presented by both class I and class II molecules revealed a common motif among these peptides.  相似文献   

7.
In the present study, we have explored ways of inducing a CTL response to a previously defined H-2Kd MHC class I restricted epitope in the circumsporozoite (CS) protein of Plasmodium berghei, and studied in detail the fine specificity of the response. We found that the s.c. injection of a variety of synthetic peptides emulsified in Freund's adjuvant efficiently induced a specific CTL response in (BALB/c x C57BL/6)F1 (H-2d x H-2b) mice. In contrast, BALB/c mice responded only marginally, consistent with the possible requirement for a concomitant Th response that would be provided by the C57BL/6 strain. Similar to our previous observations in analyzing CTL clones from sporozoite-immunized mice, the CTL response induced by peptide immunization was in part cross-reactive with an epitope from the Plasmodium yoelii species. The minimal P. berghei CS epitope, the octapeptide PbCS 253-260, was studied in detail by the analysis of a series of variant CS peptides containing single Ala substitutions. The relative antigenic activity for each variant peptide was calculated for 28 different CTL clones. Overall, the response to this P. berghei CTL epitope appeared to be extremely diverse in terms of fine specificity. This was evident among the CTL derived from sporozoite-immunized mice, as well as among those from peptide-immunized animals. The heterogeneity found at the functional level correlates with the highly diverse TCR repertoire that we have found for the same series of CTL clones in a study that is reported separately. The relative competitor activity for each Ala-substituted peptide was also determined in a quantitative functional competition assay. For the residues (Tyr253 and Ile260) within the 8-mer CS peptide, substitution with Ala reduced competitor activity by at least 40-fold, and for two others the reduction was 5- to 10-fold. When the relative antigenic activity for each CTL/peptide combination was normalized to the relative competitor activity of the peptide, a striking pattern emerged. The two residues that most affected competitor activity showed no additional effect on recognition beyond that observed for competition. In marked contrast, Ala substitutions at the other five positions tested varied widely, depending on the CTL/peptide combination. This pattern not only supports a model whereby the Tyr253 and Ile260 residues anchor the peptide to the Kd molecule, but also implies that they are virtually inaccessible to the TCR.  相似文献   

8.
The present study investigated the possibility that protein Ag fragments in the form of peptides could serve as the priming Ag in the generation of a MHC class I-restricted immune response. Trypsin-digested chicken ovalbumin (OVA-TD) fragments were used as the model Ag. The results demonstrate the peptides within OVA-TD, when injected into C57BL/6 mice, could prime T cells which lysed H-2b Ia-EL4 target cells in an OVA-TD-specific manner. In contrast to priming with OVA-TD, immunization of mice with intact OVA did not lead to generation of CTL against OVA-TD or OVA. Furthermore, target cells sensitized with intact OVA failed to be recognized by OVA-peptide-specific CTL indicating that the target cells serving as APC were unable to generate the relevant peptide determinants recognized by the T cells. These results support the idea that the processing pathway within APC for class I-restricted T cells may differ from that used for class II-restricted T cells. Using OVA-TD-specific CTL clones (phenotypically Thy 1+, CD8+, CD4-, Pgp-1+) isolated from primed animals to screen OVA-TD fractions separated by HPLC, two T cell peptide determinants were identified corresponding to OVA sequences 111-122 and 370-381. Both determinants were recognized by CTL clones in the context of the H-2Db molecule.  相似文献   

9.
10.
The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme in association with H-2Kd molecules. Surprisingly, this self peptide is not normally displayed on the cell surface associated with the restricting MHC class I molecule. Several lines of evidence suggest that this self peptide, although requiring association with the Kd molecule for CTL recognition, is not associated with this or other MHC class I allele under physiologic conditions in intact cells. Rather, it is sequestered in the cytoplasm associated with a carrier protein and is released only upon cell disruption. These results suggest a means of restricting the entry of self peptide into the class I pathway. In addition, this finding raises the possibility that self peptides sequestered within the cell can, after release from damaged cells, interact with MHC class I molecules on bystander cells and trigger autoimmune injury by virus-specific CTLs during viral infection.  相似文献   

11.
T lymphocytes expressing variable cell surface antigen receptors recognize "processed" forms of antigen, presented on the surface of other cells by molecules of the major histocompatibility complex (MHC). Naturally processed antigenic peptides can be replaced by synthetic ones. The synthetic peptide AYPPPPPTLA (P5) is an active competitor to the antigenic peptide HLA A24 170-182 (sequence RYLENGKETLQRA) that is recognized by A24 specific T cells in association with the H-2Kd class I MHC molecule. In P5 the five prolines were designed to play the role of a rigid spacer between the residue Y and the T-L unit, so as to mimic the role of Y171, T178, and L179 in the HLA A24 antigenic peptide, since these residues have proven to be the most important with respect to the binding of the HLA A24 peptide with the H-2Kd MHC molecule. Nuclear magnetic resonance studies allow us to demonstrate that in aqueous solution P5 adopts at least three long-lived conformations that can be classified with respect to the Y2-P3-P4 amide bonds as trans-trans, cis-trans, and cis-cis. Among these, the trans-trans form is present in 67% of the molecules while the two others share the remaining 33%.  相似文献   

12.
Myelin basic protein (MBP) is a candidate Ag for the autoimmune process believed to be involved in the pathogenesis of multiple sclerosis (MS). To investigate the fine specificity and HLA restriction of human MBP-specific CTL, long term T cell lines (TCL) were established from 22 MS patients and 16 healthy individuals by repeated antigenic restimulation. By using this approach, MBP-specific cytotoxic TCL were generated from 81% of the lines from MS patients and 69% of those from controls. TCL from both groups expressed the CD3+, CD4+, CD8- phenotype and secreted substantial amounts of IFN-gamma. By using large enzymatic and small synthetic peptides of MBP, TCL were primarily specific for the C-terminal part of the molecule and to a lesser extent for the N-terminal portion. Two regions of the molecule, MBP peptide 87-106 and MBP peptide 154-172, were recognized by the majority of the polyspecific lines and by four and three of 14 monospecific TCL, respectively. These highly immunogenic regions are of interest because they include sequences encephalitogenic in other species. The HLA restriction of each line was determined by using antibody blocking as well as various target cells including EBV-transformed B cells, homozygous typing cells, and fibroblasts transfected with cDNA for DR-alpha and DR-beta genes. All TCL were restricted by HLA-DR Ag. Several HLA-DR molecules restricted multiple cathepsin D-derived and synthetic MBP peptides, including the regions of peptides 87-106 and 154-172 which, respectively, were recognized in conjunction with four and three HLA-DR types. Three of these HLA-DR types are overrepresented in MS patients in different geographic regions. Together, these findings suggest that the MBP-specific cytotoxic T cell response, although not sufficient for disease, may be important for the pathogenesis of MS.  相似文献   

13.
Previous studies have shown that glutaraldehyde-fixed cells can present fragmented, but not native, Ag to class II-restricted T cells. This presumably occurs via direct binding of peptides to class II molecules at the cell surface. More recently, it has been shown that viable target cells can present peptides and endogenous, but not exogenous, protein Ag in association with class I MHC molecules to CTL. We have derived CTL specific for a chicken OVA peptide (OVA258-276) recognized in association with H-2Kb. These CTL recognize target cells that endogenously synthesize OVA and cells "loaded" with native OVA but fail to recognize target cells in the presence of exogenous native OVA. Thus, OVA must be intracellularly located to be processed and presented for CTL recognition. It remains unclear, however, whether exogenous peptides require internalization and further processing by target cells or are able to associate directly with class I molecules at the cell surface for CTL recognition. We provide evidence that glutaraldehyde-fixed cells can present synthetic peptides to H-2Kb- and H-2Db-restricted CTL and that such presentation does not require internalization or processing. The peptides used range in size from 16 to 48 amino acids in length. In contrast, glutaraldehyde-fixed cells are incapable of presenting Ag to CTL specific for influenza nucleoprotein and OVA if the cells are fixed within 1 h of viral influenza infection or loading with OVA. Thus, CTL recognition of antigenic peptides appears to occur via direct binding of peptides to class I molecules at the cell surface and does not require any intracellular processing events.  相似文献   

14.
The epitope corresponding to amino acid residues 147-161 of the nucleoprotein (NP) of influenza A virus is recognized by CTL in association with H-2Kd class I Ag. Herein, we engineered an Ig molecule carrying this CTL epitope by replacing the diversity gene segment of the H chain V region of an anti-arsonate antibody with an oligonucleotide that encodes the CTL epitope. The chimeric H chain gene was expressed either alone or together with the parental L chain in the nonsecreting BALB/c myeloma B cell line, SP2/0. The Ig produced by cells transfected with both the chimeric H chain and parental L chains genes expressed the NP epitope but lost the original arsonate binding activity. In addition, SP2/0 cells expressing the chimeric H chain either alone or together with the parental L chain were lysed by class I restricted NP-epitope specific CTL. By contrast, SP2/0 cells pulsed with soluble chimeric Ig molecules were not lysed by the specific CTL. These observations indicate that: 1) this particular CTL epitope can be expressed on Ig molecules without altering the H and L chain pairing; 2) this CTL epitope can be generated from this chimeric Ig in which it is surrounded by flanking regions distinct from those of the viral NP; and 3) the generation of this CTL epitope from the Ig molecule requires the endogenous pathway as do viral proteins.  相似文献   

15.
Although mice transgenic (Tg) for human MHC (HLA) class I alleles could provide an important model for characterizing HLA-restricted viral and tumor Ag CTL epitopes, the extent to which Tg mouse T cells become HLA restricted in the presence of endogenous H2 class I and recognize the same peptides as in HLA allele-matched humans is not clear. We previously described Tg mice carrying the HLA-B27, HLA-B7, or HLA-A2 alleles expressed as fully native (HLA(nat)) (with human beta(2)-microglobulin) and as hybrid human/mouse (HLA(hyb)) molecules on the H2(b) background. To eliminate the influence of H2(b) class I, each HLA Tg strain was bred with a H2-K(b)/H2-D(b)-double knockout (DKO) strain to generate mice in which the only classical class I expression was the human molecule. Expression of each HLA(hyb) molecule and HLA-B27(nat)/human beta(2)-microglobulin led to peripheral CD8(+) T cell levels comparable with that for mice expressing a single H2-K(b) or H2-D(b) gene. Influenza A infection of Tg HLA-B27(hyb)/DKO generated a strong CD8(+) T cell response directed at the same peptide (flu nucleoprotein NP383-391) recognized by CTLs from flu-infected B27(+) humans. As HLA-B7/flu epitopes were not known from human studies, we used flu-infected Tg HLA-B7(hyb)/DKO mice to examine the CTL response to candidate peptides identified based on the B7 binding motif. We have identified flu NP418-426 as a major HLA-B7-restricted flu CTL epitope. In summary, the HLA class I Tg/H2-K/H2-D DKO mouse model described in this study provides a sensitive and specific approach for identifying and characterizing HLA-restricted CTL epitopes for a variety of human disease-associated Ags.  相似文献   

16.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

17.
We have previously demonstrated diversity in the specificity of murine, H-2k class II-restricted, T cell clones for the hemagglutinin (HA) molecule of H3N2 influenza viruses and have mapped two T cell determinants, defined by synthetic peptides, to residues 48-68 and 118-138 of HA1. In this study we examine the nature of the determinant recognized by six distinct P48-68-specific T cell clones by using a panel of truncated synthetic peptides and substituted peptide analogs. From the peptides tested, the shortest recognized were the decapeptides, P53-62 and P54-63, which suggests that the determinant was formed from the 9 amino acids within the sequence 54-62. Asn54 was critical for recognition since P49-68 (54S) was not recognized by the T cell clones. Furthermore this peptide analog was capable of competing with P48-68 for Ag presentation, thereby suggesting that residue 54 is not involved in Ia interaction and may therefore be important for TCR interaction. Residue substitutions at position 63 also affected T cell recognition, but in a more heterogeneous fashion. Peptide analogs or mutant viruses with a single amino acid substitution at position 63 (Asp to Asn or Tyr) reduced the responses of the T cell clones to variable extents, suggesting that Asp63 may form part of overlapping T cell determinants. However since the truncated peptide P53-62 was weakly recognized, then Asp63 may not form part of the TCR or Ia interaction site, but may affect recognition through a steric or charge effect when substituted by Asn or Tyr. Ag competition experiments with the two unrelated HA peptides, P48-68 and P118-138, recognized by distinct T cell clones in the context of the same restriction element (I-Ak), showed that the peptides did not compete for Ag presentation to the relevant T cell clones, whereas a structural analog of P48-68 was a potent inhibitor. This finding is discussed in relation to the nature of the binding site for peptide Ag on the class II molecule.  相似文献   

18.
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.  相似文献   

19.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

20.
BALB/3T3 cells infected with a retroviral vector encoding the influenza virus nucleoprotein (NP) gene are efficiently lysed by CTL generated in BALB/c mice (H-2d background). Cells transduced with a mutant form of NP which contains a frameshift mutation at its NH2 terminus (NPm) do not express biochemically detectable levels of protein but nevertheless present Ag to CTL with high efficiency. Cold target inhibition studies indicate that the same CTL epitope(s) are recognized in cells harboring NP or NPm. L929 cells transduced with the NPm gene also present Ag efficiently to CTL raised in C3H mice (H-2k background). Cells engineered to express 5- to 15-fold lower levels of wild-type NP were not capable of presenting Ag to CTL, arguing against the notion that CTL are able to lyse cells expressing very low levels of Ag which might have resulted from suppression of the frameshift mutation in NPm. Implications to the mechanism of epitope generation in class I MHC-restricted immune responses are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号