首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase.   总被引:23,自引:0,他引:23  
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins in response to DNA damage that activates the base excision repair machinery. Poly(ADP-ribose) polymerase which we will now call PARP-1, has been the only known enzyme of this type for over 30 years. Here, we describe a cDNA encoding a 62-kDa protein that shares considerable homology with the catalytic domain of PARP-1 and also contains a basic DNA-binding domain. We propose to call this enzyme poly(ADP-ribose) polymerase 2 (PARP-2). The PARP-2 gene maps to chromosome 14C1 and 14q11.2 in mouse and human, respectively. Purified recombinant mouse PARP-2 is a damaged DNA-binding protein in vitro and catalyzes the formation of poly(ADP-ribose) polymers in a DNA-dependent manner. PARP-2 displays automodification properties similar to PARP-1. The protein is localized in the nucleus in vivo and may account for the residual poly(ADP-ribose) synthesis observed in PARP-1-deficient cells, treated with alkylating agents or hydrogen peroxide.  相似文献   

3.
Mammalian DNA ligases are composed of a conserved catalytic domain flanked by unrelated sequences. At the C-terminal end of the catalytic domain, there is a 16-amino acid sequence, known as the conserved peptide, whose role in the ligation reaction is unknown. Here we show that conserved positively charged residues at the C-terminal end of this motif are required for enzyme-AMP formation. These residues probably interact with the triphosphate tail of ATP, positioning it for nucleophilic attack by the active site lysine. Amino acid residues within the sequence RFPR, which is invariant in the conserved peptide of mammalian DNA ligases, play critical roles in the subsequent nucleotidyl transfer reaction that produces the DNA-adenylate intermediate. DNA binding by the N-terminal zinc finger of DNA ligase III, which is homologous with the two zinc fingers of poly(ADP-ribose) polymerase, is not required for DNA ligase activity in vitro or in vivo. However, this zinc finger enables DNA ligase III to interact with and ligate nicked DNA at physiological salt concentrations. We suggest that in vivo the DNA ligase III zinc finger may displace poly(ADP-ribose) polymerase from DNA strand breaks, allowing repair to occur.  相似文献   

4.
A 2 kilobase pair cDNA coding for the entire C-terminal catalytic domain of rat poly(ADP-ribose)polymerase has been expressed in E. coli. The overproduced 55 kDa polypeptide is active in synthesizing poly(ADP-ribose) and the 4 kDa N-terminal region of this domain is recognized by the monoclonal antibody C I,2 directed against the calf enzyme. Also, the minor alpha-chymotrypsin cleavage site found in the human catalytic domain is not present in the rat enzyme as revealed by the absence of the 40 kDa specific degradation product in the E. coli cells expressing the rat domain. The expression of this partial rat cDNA should thus permit the rapid purification and subsequent crystallization of the catalytic domain of the enzyme.  相似文献   

5.
Histone shuttling by poly ADP-ribosylation   总被引:5,自引:0,他引:5  
The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP0ribose) glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repairin vivo as a catalyst for nucleosomal unfolding.  相似文献   

6.
The 40 kDa carboxy-terminal catalytic domain (CD) of avian poly(ADP-ribose) polymerase (PARP-1) was cloned, expressed in a baculovirus expression system, and purified to homogeneity by affinity chromatography. The purified polypeptide synthesized covalent CD-poly(ADP-ribose) conjugates in the absence of DNA. Electrophoretic analysis of the ADP-ribose chain length distribution generated indicated that recombinant CD was able to catalyze the initiation, elongation, and branching reactions of poly(ADP-ribose) synthesis, although at a 500-fold lower efficiency than wild-type PARP-1. Kinetic evaluation of poly(ADP-ribose) synthesis showed that the enzymatic activities of CD increased for up to 60 minutes in a time-dependent manner. Moreover, the rates of CD auto-poly(ADP-ribosyl)ation increased with second-order kinetics as a function of the protein concentration with either betaNAD(+) or 3'-deoxyNAD(+) as a substrate. Furthermore, the formation of catalytically competent CD-[PARP-1] heterodimers was also observed in specific ultrafiltration experiments. Thus, we conclude that the 40 kDa carboxy terminus of PARP-1 forms a competent catalytic dimer in the absence of DNA, and that its automodification reaction is intermolecular.  相似文献   

7.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

8.
ADP-ribosylation is a post-translational modification resulting from transfer of the ADP-ribose moiety of NAD to protein. Mammalian cells contain mono-ADP-ribosyltransferases that catalyze the formation of ADP-ribose-(arginine) protein, which can be cleaved by a 39-kDa ADP-ribose-(arginine) protein hydrolase (ARH1), resulting in release of free ADP-ribose and regeneration of unmodified protein. Enzymes involved in poly(ADP-ribosylation) participate in several critical physiological processes, including DNA repair, cellular differentiation, and carcinogenesis. Multiple poly(ADP-ribose) polymerases have been identified in the human genome, but there is only one known poly(ADP-ribose) glycohydrolase (PARG), a 111-kDa protein that degrades the (ADP-ribose) polymer to ADP-ribose. We report here the identification of an ARH1-like protein, termed poly(ADP-ribose) hydrolase or ARH3, which exhibited PARG activity, generating ADP-ribose from poly-(ADP-ribose), but did not hydrolyze ADP-ribose-arginine, -cysteine, -diphthamide, or -asparagine bonds. The 39-kDa ARH3 shares amino acid sequence identity with both ARH1 and the catalytic domain of PARG. ARH3 activity, like that of ARH1, was enhanced by Mg(2+). Critical vicinal acidic amino acids in ARH3, identified by mutagenesis (Asp(77) and Asp(78)), are located in a region similar to that required for activity in ARH1 but different from the location of the critical vicinal glutamates in the PARG catalytic site. All findings are consistent with the conclusion that ARH3 has PARG activity but is structurally unrelated to PARG.  相似文献   

9.
10.
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.  相似文献   

11.
Yang WS  Kim JW  Lee JH  Choi BS  Joe CO 《FEBS letters》1999,449(1):33-35
The ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase.  相似文献   

12.
13.
Two polypeptides with molecular masses of 76 and 59 kDa were found to copurify with poly(ADP-ribose) polymerase from calf thymus, and to be as efficient acceptors of ADP-ribose as the polymerase itself. Analysis of their CNBr fragments by sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed that the polypeptides were derived from the 112-kDa polymerase. Isolation of poly(ADP-ribose) polymerase in the absence of protease inhibitors resulted in a loss of more than 90% of the polymerase activity and an increased proportion of the 76-kDa and 59-kDa polypeptides in the final polymerase preparation. When the polymerase and the two polypeptides were separated by gel filtration or polyacrylamide gel electrophoresis in 5% acetic acid, no polymerase activity was found associated with the two fragments. Analysis of the CNBr fragments of the three polypeptides after incubation of the enzyme preparation with [32P]NAD showed that most of the fragments were radioactive, indicating multiple ADP-ribosylation sites. Several ADP-ribosylated fragments were found to be common to all three polypeptides, or to two of them.  相似文献   

14.
A phylogenetic survey for the poly(ADP-ribose)polymerase has been conducted by analyzing enzyme activity in various organisms and determining the structure of the catalytic peptides by renaturation of functional activities of the enzyme in situ after electrophoresis in denaturing conditions (activity gel). The enzyme is widely distributed in cells from all different classes of vertebrates, from arthropods, mollusks and plant cells but could not be detected in echinoderms, nematodes, platyhelminths, thallophytes (including yeast) and bacteria. The presence on activity gels of a catalytic peptide with Mr = 115,000-120,000 was demonstrated in vertebrates, arthropods and mollusks but no activity bands were recovered in many lower eukaryotes, in plant cells and bacteria. By using an immunological procedure that used an antiserum against homogeneous calf thymus poly(ADP-ribose) polymerase, common immunoreactive peptides were visualized in mammals, avians, reptiles, amphibians and fishes, while lacking in non-vertebrate organisms. Our results indicate that the structure of poly(ADP-ribose) polymerase is conserved down to the mollusks suggesting its important role for DNA metabolism of multicellular organisms.  相似文献   

15.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

16.
Monoclonal antibodies were developed against poly(ADP-ribose) polymerase and analyzed for their reactivity against the NAD+- and DNA-binding fragments. Two fusions were performed to obtain hybridomas and the resulting anti-poly(ADP-ribose) polymerase antibodies were further screened by characterization of their immunoglobulin light chains. Five different hybridomas were isolated which produced different immunoglobulin light chains, all of which were specific for poly(ADP-ribose) polymerase. The specificities of these antibodies were determined by immunoblotting against the purified poly(ADP-ribose) polymerase, its autodegradation fragments, and the fragments prepared by limited proteolysis with chymotrypsin and papain. These fragments have been suggested to contain the NAD+-binding site, the DNA-binding site, and the automodification site, respectively. All the monoclonal antibodies reacted with the 116 kdalton (kDa) band corresponding to the purified enzyme. Four antibodies reacted exclusively with antigenic site(s) on the 46-kDa fragment which contains the DNA-binding site. A fifth antibody reacted exclusively with a clearly different antigenic site on the 74- and 54-kDa fragments which possess the NAD+ (substrate) binding site. The immunoreactivity with the major autodegradation products (69- and 46-kDa fragments) of the purified enzyme confirms this difference between the two groups of antibodies. The 22-kDa fragment corresponding to the auto-modification site does not show any immunoreactivity with the antibodies.  相似文献   

17.
Previous studies have demonstrated that an increase in poly(ADP-ribose) polymerase activity could be closely related to DNA replication during liver regeneration and to DNA repair synthesis in different experimental systems. This relationship was further investigated by studying the time course of endogenous and total poly(ADP-ribose) polymerase activity in cultured rat hepatocytes stimulated by epidermal growth factor. This mitogen has been shown to stimulate DNA synthesis in liver cells both in vivo and in vitro. A 6-fold increase in endogenous activity was observed early after epidermal growth factor addition, just before DNA synthesis. A subsequent 4-fold increment in total enzyme activity, concomitant with DNA synthesis, was detected. Orotic acid, which has recently shown mitoinhibitory effect, abolished the epidermal-growth-factor-induced increase in endogenous and total poly(ADP-ribose) polymerase activity, as well as DNA synthesis. On the contrary, 3-aminobenzamide inhibitor of poly(ADP-ribose) polymerase completely suppressed the endogenous activity but only partially modified the increase in total catalytic level and the overall pattern of thymidine incorporation. Taken together, these data indicate that, in cultured hepatocytes, the induction of DNA synthesis is supported by an increased poly(ADP-ribose) polymerase activity.  相似文献   

18.
The possible involvement of poly(ADP-ribose) polymerase [PARP; E.C. 2.4.2.30] in the adaptive response to low-g conditions was studied in cultured adult rat hepatocytes exposed to simulated microgravity produced by the random positioning machine (RPM-3D-clinostat). Four different poly(ADP-ribose) polymerases (PARPs) have been identified recently. The best-studied member of this family is PARP-1, a highly conserved, multimodular 113 kDa protein. In multicellular organisms PARPs catalyze poly(ADP-ribose) synthesis from NAD+ to a number of structural and catalytic proteins. Moreover, PARP-1 can control its protein and DNA interactions by catalyzing its automodification with poly(ADP-ribose) molecules that can include up to 200 ADP-ribose residues and several branching points; by these polymers, PARP-1 may nocovalently interact with other proteins and alter their functions. PARP-1 binds to DNA and is activated by free ends interacting with several other DNA damage checkpoint proteins. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions. Poly(ADP-ribosyl)ation plays a central role in genome stability and is involved in DNA replication and repair, gene expression, cell differentiation and transformation. We have shown that a loss of PARP-1 activity is a critical event in the early molecular steps of the hepatocarcinogenesis process. Moreover, a prompt increase in this enzymatic activity is linked not only to the presence of DNA free ends but is linked also to the start of DNA synthesis. More recently, we have reported that PARP-1 is involved in hormone-mediated gene expression in vitro and in vivo during rat liver regeneration.  相似文献   

19.
The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase.   总被引:21,自引:0,他引:21  
Mammalian vaults are ribonucleoprotein (RNP) complexes, composed of a small ribonucleic acid and three proteins of 100, 193, and 240 kD in size. The 100-kD major vault protein (MVP) accounts for >70% of the particle mass. We have identified the 193-kD vault protein by its interaction with the MVP in a yeast two-hybrid screen and confirmed its identity by peptide sequence analysis. Analysis of the protein sequence revealed a region of approximately 350 amino acids that shares 28% identity with the catalytic domain of poly(ADP-ribose) polymerase (PARP). PARP is a nuclear protein that catalyzes the formation of ADP-ribose polymers in response to DNA damage. The catalytic domain of p193 was expressed and purified from bacterial extracts. Like PARP, this domain is capable of catalyzing a poly(ADP-ribosyl)ation reaction; thus, the 193-kD protein is a new PARP. Purified vaults also contain the poly(ADP-ribosyl)ation activity, indicating that the assembled particle retains enzymatic activity. Furthermore, we show that one substrate for this vault-associated PARP activity is the MVP. Immunofluorescence and biochemical data reveal that p193 protein is not entirely associated with the vault particle, suggesting that it may interact with other protein(s). A portion of p193 is nuclear and localizes to the mitotic spindle.  相似文献   

20.
Alkylation treatment of HeLa cells results in the rapid induction of apoptosis as revealed by DNA laddering and cleavage of poly(ADP-ribose) polymerase (PARP) into the 29-and 85-kDa fragments (Kumari S. R., Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. (1998) Cancer Res. 58, 5075-5078). Here, we performed a time-course analysis of (i) poly(ADP-ribose) synthesis and degradation as well as (ii) the subnuclear localization of PARP and its fragments by using confocal laser scanning immunofluorescence microscopy. PARP was activated within 15 min post-treatment, as revealed by nuclear immunostaining with antibody 10H (recognizing poly(ADP-ribose)). This was followed by a late, time-dependent, progressive decline of 10H signals that coincide with the time of PARP cleavage. Strikingly, nucleolar immunostaining with antibodies 10H and C-II-10 (recognizing the 85-kDa PARP fragment) was lost by 15 min post-treatment, whereas F-I-23 signals (recognizing the 29-kDa fragment) persisted. We hypothesize that the 85-kDa PARP fragment is translocated, along with covalently bound poly(ADP-ribose), from nucleoli to the nucleoplasm, whereas the 29-kDa fragment is retained, because it binds to DNA strand breaks. Our data (i) provide a link between the known time-dependent bifunctional role of PARP in apoptosis and the subcellular localization of PARP fragments and also (ii) add to the evidence for early proteolytic changes in nucleoli during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号