首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

2.
Mitochondrial involvement in yeast apoptosis is probably the most unifying feature in the field. Reports proposing a role for mitochondria in yeast apoptosis present evidence ranging from the simple observation of ROS accumulation in the cell to the identification of mitochondrial proteins mediating cell death. Although yeast is unarguably a simple model it reveals an elaborate regulation of the death process involving distinct proteins and most likely different pathways, depending on the insult, growth conditions and cell metabolism. This complexity may be due to the interplay between the death pathways and the major signalling routes in the cell, contributing to a whole integrated response. The elucidation of these pathways in yeast has been a valuable help in understanding the intricate mechanisms of cell death in higher eukaryotes, and of severe human diseases associated with mitochondria-dependent apoptosis. In addition, the absence of obvious orthologues of mammalian apoptotic regulators, namely of the Bcl-2 family, favours the use of yeast to assess the function of such proteins. In conclusion, yeast with its distinctive ability to survive without respiration-competent mitochondria is a powerful model to study the involvement of mitochondria and mitochondria interacting proteins in cell death.  相似文献   

3.
Mitochondrial involvement in tracheary element programmed cell death   总被引:14,自引:0,他引:14  
The mitochondria pathway is regarded as a central component of some types of programmed cell death (PCD) in animal cells where specific signals cause the release of cytochrome c from mitochondria to trigger a proteolytic cascade involving caspases. However, plant cells lack canonical caspases, therefore a role for the mitochondria in programmed cell death in plant cells is not obvious. Using plant cells which terminally differentiate, we provide evidence supporting the involvement of mitochondria in PCD, however the release of cytochrome c is insufficient to trigger the PCD. Prior to execution of cellular autolysis initiated by the rupture of the large central vacuole to release sequestered hydrolases, mitochondria adopt a definable morphology, the inner membrane depolarizes prior to death, and cytochrome c is released from mitochondria. However, PCD can be blocked despite translocation of cytochrome c. These results suggest a role for the mitochondria in this PCD but do not support the current animal model for a causative role of cytochrome c in triggering PCD.  相似文献   

4.

Background  

Programmed nuclear death (PND), which is also referred to as nuclear apoptosis, is a remarkable process that occurs in ciliates during sexual reproduction (conjugation). In Tetrahymena thermophila, when the new macronucleus differentiates, the parental macronucleus is selectively eliminated from the cytoplasm of the progeny, concomitant with apoptotic nuclear events. However, the molecular mechanisms underlying these events are not well understood. The parental macronucleus is engulfed by a large autophagosome, which contains numerous mitochondria that have lost their membrane potential. In animals, mitochondrial depolarization precedes apoptotic cell death, which involves DNA fragmentation and subsequent nuclear degradation.  相似文献   

5.
Zhou Q  Li H  Xue D 《Cell research》2011,21(12):1662-1669
In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.  相似文献   

6.
Mitochondria play a primary role in cellular energetic metabolism. They possess their own DNA, which is exclusively maternally transmitted. The relatively recent idea that mitochondria may be directly involved in human reproduction is arousing increasing interest in the scientific and medical community. It has been shown that the functional status of mitochondria contributes to the quality of oocytes and spermatozoa, and plays a part in the process of fertilisation and embryo development. Moreover, new techniques, such as ooplasm transfer, compromise the uniquely maternal inheritance of mitochondrial DNA, raising important ethical questions. This review discusses recent information about mitochondria in the field of human fertility and reproduction.  相似文献   

7.
The role of mitochondria in the reproduction of RNA-containing tumor viruses was examined by using ethidium bromide (EB) to induce degenerative effects in mitochondria. The effects of EB in murine and avian cells were monitored by electron microscopy. Chronically infected mouse (JLS-V5) cells, in which extensive mitochondrial changes were induced, continued to produce murine leukemia virus. Also, complete reproductive cycles of Rous sarcoma virus (RSV) occurred in newly infected chicken embryo cells exposed to EB. Morphological transformation characteristic of infection of chicken embryo cells by RSV occurred in cells which contained induced aberrant mitochondria. The results demonstrate that mitochondria play a relatively minor role, if any, in the reproduction of RNA-containing tumor viruses.  相似文献   

8.
Over the last decade, yeast has been used successfully as a model system for studying the molecular mechanism of apoptotic cell death. Here, we report that Mcd1, the yeast homology of human cohesin Rad21, plays an important role in hydrogen peroxide-induced apoptosis in yeast. On induction of cell death, Mcd1 is cleaved and the C-terminal fragment is translocated from nucleus into mitochondria, causing the decrease of mitochondrial membrane potential and the amplification of cell death in a cytochrome c-dependent manner. We further demonstrate that the caspase-like protease Esp1 has dual functions and that it is responsible for the cleavage of Mcd1 during the hydrogen peroxide-induced apoptosis. When apoptosis is induced, Esp1 is released from the anaphase inhibitor Pds1. The activated Esp1 acts as caspase-like protease for the cleavage of Mcd1, which enhances the cell death via its translocation from nucleus to mitochondria.  相似文献   

9.
Understanding how complex sexual reproduction arose, and why sexual organisms have been more successful than otherwise similar asexual organisms, is a longstanding problem in evolutionary biology. Within this problem, the potential role of endosymbionts or intracellular pathogens in mediating primitive genetic transfers is a continuing theme. In recent years, several remarkable activities of mitochondria have been observed in the germline cells of complex eukaryotes, and it has been found that bacterial endosymbionts related to mitochondria are capable of manipulating diverse aspects of metazoan gametogenesis. An attempt is made here to rationalize these observations with an endosymbiotic model for the evolutionary origins of sex. It is hypothesized that the contemporary life cycle of germline cells has descended from the life cycle of the endosymbiotic ancestor of the mitochondrion. Through an actin-based motility that drove it from one cell to another, the rickettsial ancestor of mitochondria may have functioned as a primitive transducing particle, the evolutionary progenitor of sperm.  相似文献   

10.
Reproduction is a risky affair; a lifespan cost of maintaining reproductive capability, and of reproduction itself, has been demonstrated in a wide range of animal species. However, little is understood about the mechanisms underlying this relationship. Most cost-of-reproduction studies simply ask how reproduction influences age at death, but are blind to the subjects'' actual causes of death. Lifespan is a composite variable of myriad causes of death and it has not been clear whether the consequences of reproduction or of reproductive capability influence all causes of death equally. To address this gap in understanding, we compared causes of death among over 40,000 sterilized and reproductively intact domestic dogs, Canis lupus familiaris. We found that sterilization was strongly associated with an increase in lifespan, and while it decreased risk of death from some causes, such as infectious disease, it actually increased risk of death from others, such as cancer. These findings suggest that to understand how reproduction affects lifespan, a shift in research focus is needed. Beyond the impact of reproduction on when individuals die, we must investigate its impact on why individuals die, and subsequently must identify the mechanisms by which these causes of death are influenced by the physiology associated with reproductive capability. Such an approach may also clarify the effects of reproduction on lifespan in people.  相似文献   

11.
We present a model for the maintenance of sexual reproduction based on the availability of resources, which is the strongest factor determining the growth of populations. The model compares completely asexual species to species that switch between asexual and sexual reproduction (sexual species). Key features of the model are that sexual reproduction sets in when resources become scarce, and that at a given place only a few genotypes can be present at the same time. We show that under a wide range of conditions the sexual species outcompete the asexual ones. The asexual species win only when survival conditions are harsh and death rates are high, or when resources are so little structured or consumer genotypes are so manifold that all resources are exploited to the same extent. These conditions largely represent the conditions in which sexuals predominate over asexuals in the field.  相似文献   

12.
It has been suggested that release of cytochrome c (Cyt c) from mitochondria during apoptotic death is through opening of the mitochondrial permeability transition pore followed by swelling-induced rupture of the mitochondrial outer membrane. However, this remains controversial and may vary with cell type and model system. We determined that in mouse cerebellar granule neurons, Cyt c redistribution preceded the loss of mitochondrial membrane potential during the apoptotic process, suggesting that the pore did not open prior to release. Furthermore, when mitochondria were morphologically assessed by electron microscopy, they were not obviously swollen during the period of Cyt c release. This indicates that the pore mechanism of action, if any, is not through mitochondrial outer membrane rupture. While bongkrekic acid, an inhibitor of pore opening, modestly delayed apoptotic death, it also caused a significant (p < 0.05) suppression of protein synthesis. An equivalent suppression of protein synthesis by cycloheximide had a similar delaying effect, suggesting that bongkrekic acid was acting non-specifically. These findings suggest that mitochondrial permeability transition pore is not involved in Cyt c release from mitochondria during the apoptotic death of cerebellar granule neurons.  相似文献   

13.
Abstract Dorfin is a RING-finger type ubiquitin ligase for mutant superoxide dismutase 1 (SOD1) that enhances its degradation. Mutant SOD1s cause familial amyotrophic lateral sclerosis (FALS) through the gain of unelucidated toxic properties. We previously showed that the accumulation of mutant SOD1 in the mitochondria triggered the release of cytochrome c, followed by the activation of the caspase cascade and induction of neuronal cell death. In the present study, therefore, we investigated whether Dorfin can modulate the level of mutant SOD1 in the mitochondria and subsequent caspase activation. We showed that Dorfin significantly reduced the amount of mutant SOD1 in the mitochondria, the release of cytochrome c and the activation of the following caspase cascade, thereby preventing eventual neuronal cell death in a neuronal cell model of FALS. These results suggest that reducing the accumulation of mutant SOD1 in the mitochondria may be a new therapeutic strategy for mutant SOD1-associated FALS, and that Dorfin may play a significant role in this.  相似文献   

14.
Mitochondrial dysfunction and release of pro-apoptotic factors such as cytochrome c or apoptosis-inducing factor (AIF) from mitochondria are key features of neuronal cell death. The precise mechanisms of how these proteins are released from mitochondria and their particular role in neuronal cell death signaling are however largely unknown. Here, we demonstrate by fluorescence video microscopy that 8-10 h after induction of glutamate toxicity, AIF rapidly translocates from mitochondria to the nucleus and induces nuclear fragmentation and cell death within only a few minutes. This markedly fast translocation of AIF to the nucleus is preceded by increasing translocation of the pro-apoptotic bcl-2 family member Bid (BH3-interacting domain death agonist) to mitochondria, perinuclear accumulation of Bid-loaded mitochondria, and loss of mitochondrial membrane integrity. A small molecule Bid inhibitor preserved mitochondrial membrane potential, prevented nuclear translocation of AIF, and abrogated glutamate-induced neuronal cell death, as shown by experiments using Bid small interfering RNA (siRNA). Cell death induced by truncated Bid was inhibited by AIF siRNA, indicating that caspase-independent AIF signaling is the main pathway through which Bid mediates cell death. This was further supported by experiments showing that although caspase-3 was activated, specific caspase-3 inhibition did not protect neuronal cells against glutamate toxicity. In conclusion, Bid-mediated mitochondrial release of AIF followed by rapid nuclear translocation is a major mechanism of glutamate-induced neuronal death.  相似文献   

15.
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H2TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.  相似文献   

16.
We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential.  相似文献   

17.
Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.  相似文献   

18.
In this paper, a two-strain model that links immunological and epidemiological dynamics across scales is formulated. On the within-host scale, the two strains eliminate each other with the strain with the larger immunological reproduction persisting. However, on the population scale superinfection is possible, with the strain with larger immunological reproduction number super-infecting the strain with the smaller immunological reproduction number. The two models are linked through the age-since-infection structure of the epidemiological variables. In addition, the between-host transmission and the disease-induced death rate depend on the within-host viral load. The immunological reproduction numbers, the epidemiological reproduction numbers and invasion reproduction numbers are computed. Besides the disease-free equilibrium, there are two population-level strain one and strain two isolated equilibria, as well as a population-level coexistence equilibrium when both invasion reproduction numbers are greater than one. The single-strain population-level equilibria are locally asymptotically stable suggesting that in the absence of superinfection oscillations do not occur, a result contrasting previous studies of HIV age-since-infection structured models. Simulations suggest that the epidemiological reproduction number and HIV population prevalence are monotone functions of the within-host parameters with reciprocal trends. In particular, HIV medications that decrease within-host viral load also increase overall population prevalence. The effect of the immunological parameters on the population reproduction number and prevalence is more pronounced when the initial viral load is lower.  相似文献   

19.
B Edmonston 《Social biology》1990,37(3-4):233-250
This paper estimates the mean monthly losses and proportionate interruptions of breastfeeding intervals due to child death and pregnancy. The paper uses a microanalytic model with stochastic risks for the basic processes of human reproduction. The model results show that a high proportion of women, depending upon mortality level and length of breastfeeding, have their breastfeeding interrupted by either child death or pregnancy. The results of this work suggest the need for caution in interpreting observed durations of breastfeeding. Child death and pregnancy causes bias in the reported length of breastfeeding, and this bias needs to be taken into account in statistical analysis.  相似文献   

20.
Endoh H  Kobayashi T 《Autophagy》2006,2(2):129-131
Tetrahymena programmed nuclear death or nuclear apoptosis is a unique process during conjugation in which only the parental macronucleus is eliminated from the progeny cytoplasm, and other nuclei such as new micro- and macronuclei are unaffected. The nuclear death process consists of three successive steps: chromatin cleavage into high-molecular mass DNA, oligonucleosomal laddering concomitant with nuclear condensation, and complete degradation of the nuclear DNA. Following the first step of the death process, the parental macronucleus is engulfed by a large autophagosome in which many mitochondria are incorporated. Those sequestered mitochondria simply break down and release endonuclease similar to mammalian endonuclease G that is responsible for the generation of the DNA ladder, leading to the conclusion that mitochondria play a crucial role in the execution of the death program. Thus, the parental macronucleus is subject to final death by autophagy in collaboration with caspase-like enzymes, resulting in the ultimate outcome of nuclear resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号