首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioflocculation as a microbial response to substrate limitations   总被引:3,自引:0,他引:3  
Previous theories of nutrient supply to microbial floes assumed that transport within the flocs was by molecular diffusion, and they predict that overall nutrient uptake is reduced in floes compared to dispersed cells. Calculations, supported by recent advances in understanding fluid flow through suspended aggregates, however, have shown that substantial fluid flow may occur through highly permeable bacterial floes. Since bioflocculation of microorganisms in bioreactors is known to occur under conditions of low substrate availability, the rate of substrate uptake is assumed to be mass transfer limited. The hydrodynamic environment of a cell then determines cellular uptake rates. Through development of a relative uptake factor, the overall uptake by cells in flocs in sheared fluids and floes attached to bubbles are compared with the uptake by an identical quantity of dispersed cells. Bioflocculation is found to increase the rate of substrate transport to cells in permeable floes compared to dispersed cells, particularly for large-molecular-weight substrates and when bubbles are present.  相似文献   

2.
Increased mass transfer to microorganisms with fluid motion   总被引:2,自引:0,他引:2  
The effect of fluid flow and laminar shear on bacterial uptake was examined under conditions representative of the fluid environment of unattached and attached cells in wastewater treatment bioreactors. Laminar shear rates below 50 s(-1) did not increase leucine uptake by suspended cultures of Zoogloea ramigera. However, leucine uptake by cells fixed in a flow field of approximately 1 mm s(-1) was 55-65% greater than uptake by suspended cells. Enhanced microbial uptake with advective motion is consistent with mass transfer rates calculated using Sherwood number correlations. Advective flow increases microbial uptake by increasing collisions between substrate molecules and cells through compression of the concentration boundary layer surrounding a cell. The rate of leucine uptake suggests that binding proteins used to transport leucine into the cell can occupy approximately 1% of the cell surface area.  相似文献   

3.
Promastigotes of the protozoan parasite Leishmania major exhibit high affinity uptake of folate (Kt = 0.7 microM) and methotrexate (MTX) (Kt = 1.8 microM) which is saturable and sensitive to metabolic poisons. Influx of folate and MTX is competitively inhibited by 5-formyltetrahydrofolate and p-aminobenzoic acid-glutamate, but not by 4-deoxy-4-amino-10-methylpteroate, biopterin, or pteroate. A single carrier is inferred for both folate and MTX transport, as the Ki of each inhibitor for both folate and MTX influx is the same, and the apparent affinities (Kt) of the substrates folate and MTX are identical to their respective Ki values for inhibition of MTX and folate uptake. Folate influx is specifically regulated according to cellular growth phase, as stationary phase cells exhibit 7% of the Vmax of log phase cells, while energy-dependent glucose uptake is only moderately reduced in stationary phase. Folate influx is also regulated by external folate levels, as cells grown in 5 microM folate exhibit 30% of the Vmax of cells grown in folate-depleted medium. Comparison of bacterial, mammalian, and Leishmania folate transport activities indicates considerable diversity in both biochemical and regulatory properties, and suggests the possibility that selective inhibition or manipulation of folate transport may be exploited in parasite chemotherapy.  相似文献   

4.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

5.
The principal aim of the present study was to investigate the effects of variation in proton gradient and membrane potential on the transport of glycyl-L-glutamine (Gly-Gln) by renal brush border membrane vesicles. Under our conditions of transport assay, Gly-Gln was taken up by brush border membrane vesicles almost entirely as intact dipeptide. This uptake was mediated by two transporters shared by other dipeptides and characterized as the high affinity (Kt = 44.1 +/- 11.2 microM)/low capacity (Vmax = 0.41 +/- 0.03 nmol/mg protein/5 s) and low affinity (Kt = 2.62 +/- 0.50 mM)/high capacity (Vmax 4.04 +/- 0.80 nmol/mg protein/5 s) transporters. In the absence of a pH gradient, only the low affinity system was operational, but with a reduced transport capacity. Imposing a pH gradient of 1.6 pH units increased the Vmax of both transporters. Kinetic analysis of the rates of Gly-Gln uptake as a function of external pH revealed Hill coefficients of close or equal to 1, indicating that transporters contain only one binding site for the interaction with external H+. The effects of membrane potential on Gly-Gln uptake were investigated with valinomycin-induced K+ diffusion potentials. The velocity of the high affinity system but not of the low affinity system increased linearly with increasing inside-negative K+ diffusion potentials (p less than 0.01). The Kt of neither system was affected by alterations in either pH gradient or membrane potential. We conclude that (a) the high affinity transporter is far more sensitive to changes in proton gradient and membrane potential than the low affinity transporter and (b) in the presence of a pH gradient, transport of each dipeptide molecule requires cotransport of one hydrogen ion to serve as the driving force.  相似文献   

6.
Predation of attached Pseudomonas putida mt2 by the small ciliate Tetrahymena sp. was investigated with a percolated column system. Grazing rates were examined under static and dynamic conditions and were compared to grazing rates in batch systems containing suspended prey. The prey densities were 2 × 108 bacteria per ml of pore space and 2 × 108 bacteria per ml of suspension, respectively. Postingestion in situ hybridization of bacteria with fluorescent oligonucleotide probes was used to quantify ingestion. During 30 min, a grazing rate of 1,382 ± 1,029 bacteria individual−1 h−1 was obtained with suspended prey; this was twice the grazing rate observed with attached bacteria under static conditions. Continuous percolation at a flow rate of 73 cm h−1 further decreased the grazing rate to about 25% of the grazing rate observed with suspended prey. A considerable proportion of the protozoans fed on neither suspended bacteria nor attached bacteria. The transport of ciliates through the columns was monitored at the same time that predation was monitored. Less than 20% of the protozoans passed through the columns without being retained. Most of these organisms ingested no bacteria, whereas the retained protozoans grazed more efficiently. Retardation of ciliate transport was greater in columns containing attached bacteria than in bacterium-free columns. We propose that the correlation between grazing activity and retardation of transport is a consequence of the interaction between active predators and attached bacteria.  相似文献   

7.
Cadmium uptake kinetics in human erythrocytes   总被引:1,自引:0,他引:1  
Cross-membrane transport of cadmium in human erythrocytes was studied using 109Cd+(+) and liquid scintillation counting. Uptake rates were determined by depletion of radioactivity in the incubation medium and the amount of hemolyzate radioactivity taken up by the erythrocytes. Both saturable and nonsaturable components for cadmium transport were observed. The mean maximum uptake rate (Jmax) of the saturable component was 4.9 X 10(-6) mol/L/h. The transport constant (Kt) was estimated at 6.9 X 10(-5) mol/L. The diffusion constant (Kd) of the non-saturable component was 1.4 X 10(-2)/h. Both Jmax and Kt of cadmium generally decreased when Zn+(+) was present, with a biphasic response in the presence of Cu+(+). Kd of cadmium increased as Zn+(+) or Cu+(+) levels were increased. It is suggested that cadmium may penetrate human red cells via cation transport sites owing to its behavior as an analog of one or more nutrient species.  相似文献   

8.
Some properties of the thiamine uptake system in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
A kinetic study of [14C]thiamine uptake over a concentration range from 0.1 microM to 4 mM was performed in isolated rat hepatocytes. The results showed that two processes contribute to the entry in rat hepatocytes: a low affinity process with a Kt of 34.1 microM and Vmax of 20.8 pmol/10(5) cells per 30 s and a high affinity process with a Kt of 1.26 microM and Vmax of 1.21 pmol/10(5) cells per 30 s. The uptake of thiamine by the high affinity process was concentrative and reduced in a betaine medium or K+ medium. Both ouabain and 2,4-dinitrophenol decreased the thiamine uptake by the high affinity process. These findings indicate that the transport of thiamine via a high affinity process is dependent on Na+ and biological energy. The uptake of thiamine was strongly inhibited by thiamine analogs such as dimethialium and chloroethylthiamine. Among quarternary ammonium compounds other than thiamine derivatives, choline and acetylcholine significantly inhibited thiamine uptake by rat liver cells, whereas betaine and carnitine did not. A kinetic study of thiamine uptake by rat hepatocytes preloaded with pyrithiamine, a potent inhibitor of thiamine pyrophosphokinase, revealed that the biphasic property of thiamine uptake disappeared and a single carrier system for thiamine with a Kt of 40.5 microM, which was similar to the Kt value of the low affinity process, was retained. These results strongly suggest that thiamine transport system in rat liver cells is closely connected with thiamine pyrophosphokinase, which accelerates the uptake rat of thiamine by pyrophosphorylation at physiological concentrations of thiamine.  相似文献   

9.
The kinetic mechanism and specificity of the arginine-ornithine antiporter was investigated in membrane vesicles derived from Lactococcus lactis. Membrane vesicles loaded with ornithine, and diluted into an arginine-free medium, rapidly released a limited amount of ornithine during the first seconds of incubation. The amount of ornithine released was independent of the amount initially present on the inside and roughly matched the number of ornithine-binding sites in the membrane. Net flow of ornithine was only observed in membrane vesicles derived from induced cells and blocked by p-chloromercuribenzene sulfonic acid. These results suggest that net flow of ornithine is caused by a single turnover of the antiporter. With saturating concentrations of arginine in the external medium, efflux of ornithine was stoichiometrically coupled to uptake of arginine. Arginine-ornithine exchange and net flow of ornithine are electrically silent and not regulated by the electrical potential. The kinetics of the homologous exchange reactions indicate that the Vmax values for arginine and ornithine uptake are comparable, whereas the apparent Kt values differ. No major sidedness of the apparent Kt values are observed for both surfaces of the cytoplasmic membrane. Various basic amino acid analogues, including optical isomers, are transported as well, albeit with different efficiencies (Vmax/Kt). Evidence for a competitive character of arginine and ornithine interactions for binding sites on the antiporter are provided by transport and binding measurements. The Vmax and apparent Kt for arginine uptake increases with increasing internal ornithine, with little effect on the ratio of Vmax to apparent Kt. These results are discussed in terms of a simple carrier model in which the substrate-binding site is presented alternately to the two surfaces of the membrane as in a Ping Pong mechanism for enzyme kinetics.  相似文献   

10.
The luminal phase of zinc intestinal absorption has not been well characterized. This study was intended to elucidate the possible role of low molecular weight (LMW) ligands in zinc intestinal transport in an isolated rat enterocyte system. Under these in vitro conditions, zinc uptake by the isolated enterocytes was rapid, leveling off within 1 min. Kinetic analysis revealed that both a mediated and diffusion component were involved in zinc uptake in the absence of LMW ligands by the cells. For the mediated component of zinc transport, the Kt and Vmax were 64.1 microM and 13.9 nmol/20 sec/mg protein, respectively. Zinc uptake was not affected by the addition of metabolic inhibitors. In the presence of histidine or cysteine (2:1 ligand:zinc molar ratio), zinc uptake was greatly reduced and occurred solely via mediated transport. Zinc uptake was also significantly decreased upon the addition of EDTA to the assay media. Other amino acids tested had no effect on zinc uptake by the cells. Albumin markedly reduced zinc uptake by the cells. Histidine and other potential LMW ligands were unable to facilitate albumin-inhibited zinc uptake. The results of this study suggest that the intestinal absorption of zinc may not be effected in the form of chelates with LMW ligands. Amino acids such as histidine and cysteine significantly reduce the uptake of the metal by isolated rat enterocytes, making questionable their putative role as necessary vehicles in the luminal phase of zinc absorption.  相似文献   

11.
Luminal polyamines and their absorption are essential for proliferation of the enterocytes and, therefore, nutrition, health and development of the animal. The transport systems that facilitate the uptake of putrescine were characterized in chick duodenal, jejunal and ileal brush-border membrane vesicles prepared by MgCl2 precipitation from three-week-old chicks. An inwardly-directed Na+ gradient did not stimulate putrescine uptake and, therefore, putrescine transport in chick intestine. In the duodenum, jejunum and ileum, kinetics of putrescine transport fitted a model with a single affinity component plus a non-saturable component. The affinity (Kt) for [3H]putrescine transport across the brush-border membrane increased along the length of the small intestine. A model of intermediate affinity converged to the data obtained for [3H]putrescine transport with Kt approximating 1.07 and 1.05 mM or duodenum and jejunum, respectively; and high affinity with a Kt of 0.35 mM for the ileum. The polyamines cadaverine, putrescine, spermidine and spermine strongly inhibited the uptake of [3H]putrescine into chick brush-border membrane vesicles, more so for the jejunum and ileum than the duodenum. The kinetics of cadaverine, spermidine and spermine inhibition are suggestive of competitive inhibition of putrescine transport. These uptake data indicate that a single-affinity system facilitates the intestinal transport of putrescine in the chick; and the affinity of transporter for putrescine is higher in the ileum than in the proximal sections of the small intestine. In addition, this study shows that the ileum of chicks plays an important role in regulating cellular putrescine concentration.  相似文献   

12.
Highly purified lysosomal membrane vesicles, obtained from rat liver lysosomes, were used to study characteristics of NeuAc transport across the lysosomal membrane. Uptake of [14C]NeuAc was found to be strongly influenced by a pH gradient across the membrane. When a proton gradient (pHin greater than pHout) was generated by impermeable buffers, NeuAc uptake above equilibrium level (overshoot) was observed. The influence of membrane diffusion potentials was ruled out by experiments where K+ and valinomycin were present. The overshoot appeared to be specifically produced by protons, since gradients of other cations (Na+ and K+) did not give stimulation. Proton-driven uptake was saturable (Kt = 0.24 mM) and mediated by a single system, as shown by linearity of the Scatchard plot. Stimulation of transport was also obtained by preincubation of vesicles with MgATP and the effect was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, but not by the protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Monocarboxylic sugars like glycuronic acids were competitive inhibitors of sialic acid transport. Transstimulation of [14C] NeuAc uptake was observed when vesicles were preloaded either with unlabeled NeuAc or with glucuronic acid. The data demonstrate that lysosomal membrane vesicles from rat liver are a suitable system for kinetic studies of solute transport events. The presence of a proton-driven carrier in the lysosomal membrane specific for sialic acid and other acidic sugars, including glucuronic acid, is shown. The possible physiological significance of these findings for the human lysosomal carrier and the patients with a sialic acid transport defect is discussed.  相似文献   

13.
A comparison was made among rates of uptake of 3H-uridine, 3H-glycerol and 3H-D-xylose into mouse fibroblasts of line L sensitive to ethidium bromide (EB), and into EB-resistant cells obtained from this line by selection. Constants of uridine transport and phosphorylation were determined. For EB sensitive L cells Kt was 162 +/- 27 microM, Vt was 7.5 +/- 0.7 microM/sec. For EB resistant cells Kt was 178 +/- 27 microM, and Vt was 4.6 +/- 0.2 microM/sec. Thus, the transport rate of uridine in resistant cells was twice lower than in EB sensitive cells. The rate of uridine phosphorilation in EB resistant cells was by three times lower than in EB sensitive ones. The uptake of glycerol into resistant cells was also lowered. There was no difference in transport of 3H-D-xylose between sensitive and resistant cells. The data obtained may suggest some changes in plasma membrane in the EB resistant cells.  相似文献   

14.
Escherichia coli KK313, which was deficient in spermidine transport, was isolated by treatment of E. coli MA261 with N-methyl-N'-nitro-N-nitrosoguanidine. E. coli NH1596, which was deficient in spermidine transport and has a 90% decreased putrescine transport activity, was obtained by a second treatment of E. coli KK313 with the same mutagen. Genes for polyamine transport systems were isolated by transforming E. coli NH1596 through DNA fragments from E. coli DR112 using pACYC184 as a vector. One clone for the gene of protein(s) catalyzing both putrescine and spermidine uptake (pPT104) was isolated. Two clones for the genes of protein(s) catalyzing only putrescine uptake (pPT79 and pPT71) were obtained. The genes encoded by pPT104, pPT79, and pPT71 were mapped at 15, 19, and 16 min of E. coli chromosome, respectively. Spermidine uptake by NH1596 carrying pPT104, and by MA261, was not inhibited by putrescine and several polyamine analogues, and the Kt values of these two systems were both approximately 0.1 microM. Putrescine transport by NH1596 carrying pPT104 was inhibited completely by spermidine, N,N-dimethyl-4,4'-bipyridylium (paraquat), and N1-acetyl-spermidine, and the Kt value was 1.4 microM. Putrescine uptake by NH1596 carrying pPT79 or pPT71 was not inhibited by spermidine and several polyamine analogues, and the Kt values were 0.5 and 1.8 microM, respectively. In MA261, the putrescine uptake was inhibited by 25-35% by paraquat and N1-acetyl-polyamines and showed two Kt values, 0.5 and 1.5 microM. Based on these findings, the polyamine transport systems of E. coli are discussed.  相似文献   

15.
Zinc uptake mechanisms at the apical and basolateral membrane borders of caco-2 cells were examined. This human-derived cell line possesses many morphological and functional characteristics of absorptive small intestinal cells. By day 14, confluent and well-differentiated monolayers were formed when the cells were grown on porous polycarbonate filters. Labelled zinc was placed on the apical or basal side of the monolayer and its uptake by the cells, as well as its transport across the monolayer, were measured. Zinc uptake by the cells from the apical side was found to be a saturable process (Kt = 41 microM; Vmax = 0.3 nmols/cm2/10 min) with a diffusional term at higher concentrations (1.0 sec/cm). Apical uptake was not affected by metabolic inhibitors or potential zinc ligands. Zinc uptake from the basolateral side was concentration dependent (Kd = 1.3 sec/cm) and was partially inhibited (30%) by ouabain and vanadate, suggesting that the (Na-K)-ATPase on the basolateral membrane is involved in the serosal uptake of zinc by the cell. Transport of zinc across the monolayers from the apical or basolateral compartment was concentration dependent and was not affected by metabolic inhibitors. Zinc transport from the basolateral side was greater than 2-fold greater than apical transport. Hence, separate mechanisms can be distinguished with respect to zinc uptake at the apical and basolateral membranes of caco-2 cells.  相似文献   

16.
The mechanism of uptake of phenanthrene by Mycobacterium sp. strain RJGII-135, a polycyclic hydrocarbon-degrading bacterium, was examined with cultures grown on phenanthrene (induced for phenanthrene metabolism) and acetate (uninduced). Washed cells were suspended in aqueous solutions of [9-(14)C]phenanthrene, and then the cells were collected by filtration. Low-level steady-state (14)C concentrations in uninduced cells were achieved within the first 15 s of incubation. This immediate uptake did not show saturation kinetics and was not susceptible to inhibitors of active transport, cyanide and carbonyl cyanide m-chlorophenylhydrazone. These results indicated that phenanthrene enters rapidly into the cells by passive diffusion. However, induced cells showed cumulative uptake over several minutes. The initial uptake rates followed saturation kinetics, with an apparent affinity constant (K(t)) of 26 +/- 3 nM (mean +/- standard deviation). Uptake of phenanthrene by induced cells was strongly inhibited by the inhibitors. Analysis of cell-associated (14)C-labeled compounds revealed that the concurrent metabolism during uptake was rapid and was not saturated at the substrate concentrations tested, suggesting that the saturable uptake observed reflects membrane transport rather than intracellular metabolism. These results were consistent with the presence of a saturable, energy-dependent mechanism for transport of phenanthrene in induced cells. Moreover, the kinetic data for the cumulative uptake suggested that phenanthrene is specifically bound by induced cells, based on its saturation with an apparent dissociation constant (K(d)) of 41 +/- 21 nM (mean +/- standard deviation). Given the low values of K(t) and K(d), Mycobacterium sp. strain RJGII-135 may use a high-affinity transport system(s) to take up phenanthrene from the aqueous phase.  相似文献   

17.
S K Wang  N H Hwang 《Biorheology》1992,29(2-3):353-377
Blood cells suspended in shear flows exhibit much larger dispersive motions than those predicted by the Stokes-Einstein formula for Brownian diffusion. The lateral migration and the erratic motions of the 8 microns red blood cells (RBC) is thought to be analogous to a diffusive process. It is shown that the often cited convective-diffusion theory may not be an adequate model for describing the transverse migration of suspended cells in blood flow. A comprehensive review of both the classical theory and of contemporary work in particle transport is presented, with particular emphasis on low Reynolds number tube flows. The mechanisms of Taylor dispersion, the effects of Brownian perturbations on translational and rotational motions of the suspended particles in shear fields, and the influence of integratable and chaotic advections, are individually examined. The classical experiment by Segre and Silberberg (1962) lead us to believe that particle hydrodynamics may play an important role in transverse migrations. In this light, we have further examined the hydrodynamic aspects of the so-called "tubular pinch" effect, the lateral migration of rigid spheres. We have also discussed the transverse motions of liquid drops, and the reversibility of the organization of suspensions in transport. The convective accelerations in the entrance region of a tube can produce relative velocities between fluid medium and various type of particulates if there is a difference in density. The deformable RBC, an "active-type" particle, can provide feedback to the flow from both mass and momentum considerations; the more rigid platelet, a "passive-type" particle, will experience a much smaller relative velocity as compared to the RBC. We may expect that particles of different densities are transported to different equilibrium annular positions before entering the fully developed flow region. The erratic, lateral movement of suspended particulates in steady laminar tube flow can be described by the usual Lagrangian coordinates.  相似文献   

18.
1. Amino acid transport and intracellular Na+ and K+ content have been studied in two lines of chickens, one high and the other low uptake, selected for their ability to transport leucine into erythrocytes. 2. Low line birds were less effective in absorbing glycine into erythrocytes than were high line birds, the difference in transport being due to a difference in maximal flux (Vmax), but not in apparent affinity for transport sites (Kt). 3. In contrast to glycine uptake, the greater ability of the high line to absorb lysine was found to be due to a difference in both Vmax and Kt. 4. High line erythrocytes were also observed to contain slightly more K+ (about 5%) and about 20% less Na+ than low line erythrocytes. 5. These results are discussed in terms of the ion dependency of amino acid transport.  相似文献   

19.
Saccharomyces cerevisiae NCYC 239 suspended in solutions of NaCl showed two distinct plateaus in plots of electrophoretic mobility vs. pH, corresponding to pKa values of approx. 2 and 5. This is in contrast to cells suspended in buffer where only a single pKa (4) can be determined. Modification of cells with KI/I2 or nitrous acid led to altered electrophoretic mobility, indicating the presence of sulphydryl and amino groups, respectively, in the yeast cell surface, whereas uranyl nitrate modification had little effect, suggesting phosphate groups to be absent. Electron micrographs showed visible effects of KI/I2 and nitrous acid modification on cell membrane structure, and in these modified cells amphotericin B uptake was rapid. It is suggested that diffusion through the cell wall is the rate-limiting step for amphotericin B uptake. An activation energy of 20 kJ X mol-1 was determined for uptake of amphotericin B by unmodified cells.  相似文献   

20.
Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis   总被引:1,自引:0,他引:1  
Ionic regulation by the gills of the freshwater-adapted Chinese crab, Eriocheir sinensis, was examined. The balance of uptake and loss of NaCl in crabs living in freshwater was established. Urine production was measured directly by cannulating the nephropores. Daily urinary loss of Na+ is equivalent to 16% of the haemolymph Na+ content and is substantially higher than that based on data from indirect measurements reported in the literature. Weight and area of anterior and posterior gills are proportional to body weight. The role of the gills in compensating urinary loss by uptake was determined by analysing changes in Na+ and Cl- concentrations in the external medium in which isolated perfused gills were suspended. In posterior gills, salt loss is quantitatively balanced by NaCl net uptake from an external concentration of 1.3 mmol l(-1) NaCl upwards. The transport constant (Kt) for half maximum saturation of net uptake and saturation of NaCl uptake are 1.5 mmol l(-1) and 4 mmol l(-1), respectively. In contrast to previous studies in which tracer fluxes or transepithelial short-circuit currents were determined, our method of direct ion determination shows that no net uptake of Na+ or Cl- occurs in posterior gills in the absence of the respective counter ion, or when uptake of one ion is blocked by a specific inhibitor. Net uptake of Na+ and Cl- was about equal. We conclude that the uptake of the two ions is coupled. The properties of the branchial ion uptake of E. sinensis correlates with the distribution of this crab in river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号