首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Taurine transport by lactating gerbil mammary tissue has been examined. Taurine uptake is, mediated by a high-affinity system which is specific for -amino acids. The uptake of taurine is Na+-dependent but appears not to be obligatorly dependent upon Cl. Thus, replacing Na+ with choline almost abolished taurine uptake. Substituting Cl with NO 3 had no effect whereas SCN induced a small but significant increase in taurine influx. Taurine uptake was Na+-dependent under conditions where Cl had been replaced with NO 3 . However, it is apparent that the Na+-dependent taurine transport system requires the presence of a permeable anion because replacing Cl with gluconate markedly reduced taurine uptake. Cell-swelling, induced by a hyposmotic challenge, increased the efflux of taurine from gerbil mammary tissue via a pathway sensitive to niflumic acid.Abbreviations Tris (Tris(hydroxymethyl)aminomethane - BES (N,N-bis[2-hydroxyethyl]-2-aminoethane sulphonic acid)  相似文献   

2.
The purpose of this study was to identify the uptake mechanism of γ-aminobutyric acid (GABA) via taurine transporter (Slc6a6/TauT) and its relationship with GABA transport at the inner BRB. Rat Slc6a6/TauT-transfected HeLa cells exhibited Na+-, Cl-, and concentration-dependent [3H]GABA uptake with a Km of 1.5 mM. Taurine, β-alanine, and GABA markedly inhibited Slc6a6/TauT-mediated uptake of [3H]GABA. The uptake of [3H]GABA by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2) was Na+-, Cl-, and concentration-dependent with a Km of 2.0 mM. This process was more potently inhibited by substrates of Slc6a6/TauT, taurine and β-alanine, than those of GABA transporters, GABA and betaine. In the presence of taurine, there was competitive inhibition with a Ki of 74 μM. [3H]Taurine also exhibited competitive inhibition with a Ki of 1.8 mM in the presence of GABA. In conclusion, rat Slc6a6/TauT has the ability to use GABA as a substrate and Slc6a6/TauT-mediated GABA transport appears to be present at the inner BRB.  相似文献   

3.
4.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

5.
Here we characterized transepithelial taurine transport in monolayers of cultured human intestinal Caco-2 cells by analyzing kinetic apical and basolateral uptake and efflux parameters. Basolateral uptake was Na+- and Cl- dependent and was inhibited by β-amino acids. Uptake by this membrane showed properties similar to those of the apical TauT system. In both membranes, taurine uptake fitted a model consisting of a non-saturable plus a saturable component, with a higher half-saturation constant and transport capacity at the apical membrane (Km, 17.1 μmol/L; Vmax, 28.4 pmol·cm−2·5 min−1) than in the basolateral domain (Km, 9.46 μmol/L; Vmax, 5.59 pmol·cm−2·5 min−1). The non-saturable influx component, estimated in the absence of Na+ and Cl, showed no significant differences between apical and basolateral membranes (KD, 89.2 and 114.7 nL·cm−2 · 5 min−1, respectively). Taurine efflux from the cells is a diffusive process, as shown in experiments using preloaded cells and in trans-stimulation studies (apical KD,72.7 and basolateral KD, 50.1 nL·cm−2·5 min−1). Basolateral efflux rates were significantly lower than passive influx rates. We conclude that basolateral taurine uptake in Caco-2 cells is mediated by a transport mechanism that shares some properties with the apical system TauT. Moreover, calculation of unidirectional and transepithelial taurine fluxes reveals that apical influx of this amino acid is higher than basolateral efflux rates, thereby enabling epithelial cells to accumulate taurine against a concentration gradient.  相似文献   

6.
Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is a critical step in cell proliferation, differentiation and induction of apoptosis. In the present study, we use mouse NIH3T3 fibroblasts and Ehrlich Lettré ascites tumour cells with different CK2 expression levels. Taurine uptake via the Na+ dependent transporter TauT and taurine release are increased and reduced, respectively, following pharmacological CK2 inhibition. The effect of CK2 inhibition on TauT involves modulation of transport kinetics, whereas the effect on the taurine release pathway involves reduction in the open-probability of the efflux pathway. Stimulation of PLA2 activity, exposure to exogenous reactive oxygen species as well as inhibition of protein tyrosine phosphotases (PTP) potentiate the swelling-induced taurine loss. Inhibition of PI3K and PTEN reduces and potentiates swelling-induced taurine release, respectively. Inhibition of CK2 has no effect on PLA2 activity and ROS production by NADPH oxidase, whereas it lifts the effect of PTEN and PTP inhibition. It is suggested that CK2 regulates the taurine release downstream to known swelling-induced signal transducers including PLA2, NADPH oxidase and PI3K.  相似文献   

7.
Taurine and zinc exert neurotrophic effects. Zinc modulates Na+/Cl-dependent transporters. This study examined the effect of zinc (ZnSO4) ex vivo and zinc chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) in vivo on [3H]taurine transport in goldfish retina. The effect of TPEN in vivo on taurine and zinc levels was determined. Isolated cells were incubated in Ringer with zinc (0.1–100 μM). Taurine transport was done with taurine (0.001–1 mM) and 50 nM [3H]taurine. Zinc (100 μM) noncompetitively inhibited taurine transport. TPEN was administered intraocularly and retinas extracted 3, 5 and 10 days later. Taurine was determined by HPLC (nmol/mg protein) and zinc by spectrophotometry ICP (mg/mg protein). Taurine and zinc levels decreased at 3 days and increased at 10 days after TPEN administration. At 10 days after intraocular TPEN, taurine transport affinity increased (K s = 0.018 ± 0.006 vs. 0.028 ± 0.008 mM). Apparently, zinc deficiency affects the taurine–zinc complex and taurine availability. The increased taurine uptake affinity by TPEN was possibly associated with a response to maximize retinal taurine content at low zinc concentration.  相似文献   

8.
A novel uptake system for the unusual sulfonated amino acid taurine was discovered in the prokaryote, encapsulated Staphylococcus aureus strain M. This strain has been shown previously to contain taurine in its capsular polysaccharide. Taurine uptake by whole cells incubated in buffer showed a saturable dependency upon Na+ and taurine uptake was itself a saturable process, stimulated by glucose, and markedly affected by temperature. No evidence was found for the inducibility of taurine uptake. In the presence of 10 mM NaCl Lineweaver-Burk plots revealed a Km of 42 μM and Vmax of 4.6 nmol/min per mg dry weight for taurine uptake at 37°C. Increasing concentrations of Na+ decreased the Km of the system and appeared to increase the Vmax. Of various other cations tested only Li+ supported marked taurine uptake. Excess unlabelled taurine did not cause efflux of radioactivity taken up. Taurine was taken up into cold trichloroacetic acid-soluble material and did not chromatograph as taurine, indicating rapid metabolism during or closely following uptake. Taurine uptake appeared to occur via a highly specific system because amino acids representing the major known groups of amino acid transport systems in S. aureus did not inhibit taurine uptake, and uptake was only slightly diminished by the structurally closely related compounds hypotaurine and 3-amino-1-propane sulfonic acid. Sulfhydryl group reagents, electron transport inhibitors, an uncoupler and inhibitors of Na+-linked transport processes inhibited taurine uptake. A variety of other metabolic inhibitors had little effect on taurine uptake.  相似文献   

9.
Summary The amino acid pool of MDCK cells was essentially constituted by alanine, glycine, glutamic acid, serine, taurine, lysine, -alanine and glutamine. Upon reductions in osmolarity, free amino acids were rapidly mobilized. In 50% hyposmotic solutions, the intracellular content of free amino acids decreased from 69 to 25mm. Glutamic acid, taurine and -alanine were the most sensitive to hyposmolarity, followed by glycine, alanine and serine, whereas isoleucine, phenylalanine and valine were only weakly reactive. The properties of this osmolarity-sensitive release of amino acids were examined using3H-taurine. Decreasing osmolarity to 85, 75 or 50% increased taurine efflux from 0.6% per min to 1.6, 3.5 and 5.06 per min, respectively. The time course of3H-taurine release closely follows that of the regulatory volume decrease in MDCK cells. Taurine release was unaffected by removal of Na+, Cl or Ca2+, or by treating cells with colchicine or cytochalasin. It was temperature dependent and decreased at low pH. Taurine release was unaffected by bumetanide (an inhibitor of the Na+/K+/2Cl carrier); it was inhibited 16 and 67 by TEA and quinidine (inhibitors of K+ conductances), unaffected by gadolinium or diphenylamine-2-carboxylate (inhibitors of Cl channels) and inhibited 50% by DIDS. The inhibitory effects of DIDS and quinidine were additive. Quinidine but not DIDS inhibited taurine uptake by MDCK cells.  相似文献   

10.
Summary Ion dependence and electrogenicity of taurine uptake were studied in rabbit renal outer cortical brush-border membrane vesicles isolated by differential precipitation. Na+-d-glucose cotransport was followed in parallel to monitor changes in the membrane potential. Concentrative taurine flux was dependent on a chemical and/or an electrical Na+ gradient (K+ diffusion potential) and could be completely inhibited by other -amino acids. It displayed a specific anion requirement (ClBrSCN>I>NO 3 ). At chemical Na+ equilibrium, Cl gradients, depending on their orientation, stimulated or inhibited taurine uptake more than could be attributed solely to electrical anion effects, although a Cl gradient alone could not energize an overshoot. Furthermore, taurine tracer exchange was significantly stimulated by Cl as well as Br. The Cl stoichiometry was found to be one, whereas taurine transport, in the presence of Cl, was sigmoidally related to the Na+ concentration, resulting in a coupling ratio of 2 to 3 Na+: 1 taurine. Upon Cl replacement with gluconate, taurine uptake showed a reduced potential sensitivity and was no longer detectably affected by the Na+ concentration (up to 150mm). These results suggest a 2 to 3 Na+:1 Cl:1 taurine cotransport mechanism driven mainly by the Na+ gradient, which is sensitive to the membrane potential due to a negatively charged empty carrier. Cl appears to stimulate taurine flux primarily by facilitating the formation of the translocated solute-carrier complex.  相似文献   

11.
Summary. Taurine has been thought to function as a regulator of neuronal activity, neuromodulator and osmoregulator. Moreover, it is essential for the development and survival of neural cells and protects them under cell-damaging conditions. Taurine is also involved in many vital functions regulated by the brain stem, including cardiovascular control and arterial blood pressure. The release of taurine has been studied both in vivo and in vitro in higher brain areas, whereas the mechanisms of release have not been systematically characterized in the brain stem. The properties of release of preloaded [3H]taurine were now characterized in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. In general, taurine release was found to be similar to that in other brain areas, consisting of both Ca2+-dependent and Ca2+-independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, as both Na+-free and Cl -free conditions greatly enhanced it. Cl channel antagonists and a Cl transport inhibitor reduced the release at both ages, indicating that a part of the release occurs through ion channels. Protein kinases appeared not to be involved in taurine release in the brain stem, since substances affecting the activity of protein kinase C or tyrosine kinase had no significant effects. The release was modulated by cAMP second messenger systems and phospholipases at both ages. Furthermore, the metabotropic glutamate receptor agonists likewise suppressed the K+-stimulated release at both ages. In the immature brain stem, the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release in a receptor-mediated manner. This could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

12.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

13.
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.  相似文献   

14.
The effects of ions on taurine and -alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and -alanine molecule across cell membranes. A reduction in Cl concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and -alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and -alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or -alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.  相似文献   

15.
R. Behl  K. Raschke 《Planta》1986,167(4):563-568
Excised Na+-starved barley roots were suspended in solutions of Na+ in combination with NO 3 - , Cl-, and SO 4 2- , and effects of the added phytohormone, abscisic acid (ABA), to the medium were determined. Abscisic acid increased the rate of Na+ (22Na+) accumulation and the amount of Na+ deposited in the vacuoles. These stimulating effects of ABA were modified by anions following the sequence NO 3 - >Cl->SO 4 2- . Testing whether the magnitude of the pH gradient across the plasmalemma of the cells of the root cortex affects rates of Na+ accumulation and their dependence upon ABA, we observed that, in the pH range from 4 to 8, the ABA-induced stimulation was strongest at pH 5.8, and least at pH 4. Changes in pH during the experiment caused changes in the rates of Na+ accumulation in agreement with experiments performed at constant pH values. Simultaneously with ABA-enhanced accumulation, loss of Na+ occurred. Loss of Na+ was strongest at pH 4 and was affected by anions, being greatest with SO 4 2- and following the sequence SO 4 2- >Cl->NO 3 - . On the basis of the finding that initial acceleration of uptake as well as loss of Na+ depended on the pH of the medium we suggest that, in barley roots, ABA stimulates an exchange of Na+ for H+ at the plasmalemma of the cortical cells. The results indicate that ABA-stimulated expulsion of Na+, in combination with ABA-stimulated sequestration in the vacuoles, constitutes one of the mechanisms which enable barley plants to tolerate higher than normal levels of Na+.Abbreviations ABA abscisic acid - FW fresh weight  相似文献   

16.
The monovalent ion transport systems of an immortalized insect cell line (CHE) have been investigated. These cells are unusual in that unlike most vertebrate cells, their normal extracellular environment consists of high potassium and low sodium concentrations. CHE cells maintained high intracellular [K+] through both a furosemide-inhibitable and a vanadate-inhibitable transport system. Intracellular exchangeable [Na+] was slightly lower than the extracellular [Na+] and was maintained at this level through a vanadate-sensitive transport system. Na+ uptake was also inhibited by furosemide: however, the stoichiometry of furosemide-sensitive Na+ uptake when compared with furosemide-sensitive K+ uptake indicated that these cations are not cotransported. 4,4′-Diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) inhibited Na+, K+, and Cl? uptake. Vanadate and furosemide decreased cytoplasmimic pH, while cytoplasmic pH increased in the presence of DIDS. A model is presented explaining how Na+, K+, Cl?, H+ and HCO3 ? fluxes are regulated in these cells.  相似文献   

17.
Milk taurine plays a critical role in neonatal development. Taurine uptake in lactating sow mammary tissue has not been characterized previously. The kinetic properties, ion dependence and substrate specificity of taurine uptake were characterized in mammary tissue collected from lactating sows at slaughter. Tissue explants were incubated in an isosmotic physiologic buffer with [3H]taurine tracer to measure taurine uptake. Taurine uptake was dependent upon the presence of extracellular sodium and chloride ions, which is consistent with the co-transport of sodium and chloride with taurine. Uptake was not dependent upon ion exchange mechanisms or upon furosemide-sensitive ion co-transport. Taurine uptake was saturable and exhibited an apparent Km of 20 μM and a Vmax of 386 μmol/kg cell water/30 min. Substrate specificity studies indicated a strong interaction of β-amino acids with the taurine transport system. Taurine transport in lactating sow mammary tissue is therefore a high affinity, sodium-dependent mechanism specific for β-amino acids, and is analogous to sodium-dependent taurine uptake in other tissues. The high affinity and high specificity of the taurine uptake system allows for concentration of taurine within the mammary cell and is ultimately responsible for provision of taurine required for neonatal development.  相似文献   

18.
Plants of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance were grown in sand with nutrient solutions. 35-d-old plants were subjected to 5 levels of salinity created by adding NaCl, CaCl2 and Na2SO4. Growth reduction caused by salinity was accompanied by increased Na+ and Cl- concentrations, Na+/K+ ratio, and decreased concentration of K+. The salt tolerant cv. Kharchia 65 showed better ionic regulation. Salinity up to 15.7 dS m-1 induced increased uptake of Na+ and Cl- but higher levels of salinity were not accompanied by further increase in uptake of these ions. Observed increases in Na+ and Cl- concentrations at higher salinities seemed to be the consequence of reduction in growth. Uptake of K+ was decreased; more in salt sensitive cultivar. This was also accompanied by differences in its distribution.  相似文献   

19.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

20.
Saransaari P  Oja SS 《Amino acids》2007,32(3):439-446
Summary. Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, particularly in the immature brain stem. Cl channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号