首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nagababu E  Rifkind JM 《Biochemistry》2000,39(40):12503-12511
The reaction of Fe(II) hemoglobin (Hb) but not Fe(III) hemoglobin (metHb) with hydrogen peroxide results in degradation of the heme moiety. The observation that heme degradation was inhibited by compounds, which react with ferrylHb such as sodium sulfide, and peroxidase substrates (ABTS and o-dianisidine), demonstrates that ferrylHb formation is required for heme degradation. A reaction involving hydrogen peroxide and ferrylHb was demonstrated by the finding that heme degradation was inihibited by the addition of catalase which removed hydrogen peroxide even after the maximal level of ferrylHb was reached. The reaction of hydrogen peroxide with ferrylHb to produce heme degradation products was shown by electron paramagnetic resonance to involve the one-electron oxidation of hydrogen peroxide to the oxygen free radical, superoxide. The inhibition by sodium sulfide of both superoxide production and the formation of fluorescent heme degradation products links superoxide production with heme degradation. The inability to produce heme degradation products by the reaction of metHb with hydrogen peroxide was explained by the fact that hydrogen peroxide reacting with oxoferrylHb undergoes a two-electron oxidation, producing oxygen instead of superoxide. This reaction does not produce heme degradation, but is responsible for the catalytic removal of hydrogen peroxide. The rapid consumption of hydrogen peroxide as a result of the metHb formed as an intermediate during the reaction of reduced hemoglobin with hydrogen peroxide was shown to limit the extent of heme degradation.  相似文献   

2.
3.
4.
5.
CheB, the methylesterase of chemotactic bacteria, catalyzes the hydrolysis of glutamyl-methyl esters in bacterial chemoreceptor proteins. The two cysteines predicted by the amino acid sequence of CheB were replaced by alanine residues. The resulting mutants, Cys207-Ala, Cys309-Ala and a double cysteine mutant Cys207-Ala/Cys309-Ala, retained methylesterase activity, indicating that sulfhydryls are not crucial for CheB mediated catalysis. A homology search revealed a conserved serine active-site region between residues 162 and 166 which is homologous to the active-site region of acetylcholine esterases, suggesting that Ser164 of CheB is the active-site nucleophile. Oligonucleotide-directed mutagenesis was used to change the serine to a cysteine. This Ser164-Cys mutant had less than 2% of the wild-type activity. Unlike the serine proteinases which utilize a 'catalytic triad' mechanism, CheB does not have the conserved histidine and aspartic acid residues located in positions N-terminal to the active-site serine. In addition, CheB is not labeled with di-isopropylfluorophosphate, a potent inhibitor of other serine hydrolases. A novel mechanism is proposed for CheB involving substrate-assisted catalysis to account for these apparent anomalies.  相似文献   

6.
Addition of beta-lapachone, an o-naphthoquinone endowed with trypanocidal properties to respiring Trypanosoma cruzi epimastigotes induced the release of O2- and H2O2 from the whole cells to the suspending medium. The same beta-lapachone concentration (4 micron) that released H2O2 at maximal rate completely inhibited T. cruzi growth in a liquid medium. The position isomer, alpha-lapachone, did not stimulate O2- and H2O2 release, and did not inhibit epimastigote growth. beta-Lapachone was able to stimulate H2O2 production by the epimastigote homogenate in the presence of NADH as reductant. The same effect was observed with the mitochondrial fraction supplemented with NADH, where beta-lapachone enhanced the generation of O2- and H2O2 4.5- and 2.5-fold respectively. beta-Lapachone also increased O2- and H2O2 production (2.5 and 2-fold respectively) by the microsomal fraction with NADPH as reductant. Cyanide-insensitive NADH and NADPH oxidation by the mitochondrial and microsomal fractions (quinone reductase activity) was stimulated to about the same extent by beta-lapachone. alpha-Lapachone was unable to increase O2- and H2O2 production and quinone reductase activity of the mitochondrial and microsomal fractions.  相似文献   

7.
Phytohaemagglutinin-stimulated and non-stimulated incorporation of [3H]thymidine into human peripheral blood lymphocytes is inhibited by the calcium antagonist PY 108–068 and by the calmodulin antagonists trifluo-perazine andN-(6-aminohexyl)-5-chloro-l-naphthalene sulphonamide (W7). It is argued that calmodulin may be involved in both non-stimulated [3H]thymidine uptake in lymphocytes and also in the lymphocyte response to phytohaemagglutinin.  相似文献   

8.
Rice leaves produce H2O2 in response to abscisic acid (ABA), which results in induction of senescence and accumulation of NH4+. The upstream steps of the ABA-induced H2O2 production pathway in rice leaves remain largely unclear. In animal cells, H2O2 production in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-knase (PI3K). In the present study, we examined whether PI3P plays a role in H2O2 production in rice leaves exposed to ABA. We found that PI3K inhibitors LY 294002 (LY) or wortmannin (WM) inhibited ABA-induced H2O2 production, senescence and NH4+ accumulation. Hydrogen peroxide almost completely rescued the inhibitory effect of LY or WM. It appears that PI3P plays a role in ABA-induced H2O2 production, senescence, and NH4+ accumulation in rice leaves.  相似文献   

9.
Inhibitors of endocytosis have been used to show that internalization of superoxide dismutase is required for the enzyme to protect hepatocytes from the cytotoxicity of hydrogen peroxide. As shown previously (Starke, P. E., and Farber, J. L. (1985) J. Biol. Chem. 260, 10099-10104), superoxide dismutase prevented the killing of cultured hepatocytes by H2O2 generated in the medium by glucose oxidase. Five inhibitors of endocytosis, methylamine, monensin, benzyl alcohol, cytochalasin B, and oligomycin, each abolished the protective effect of superoxide dismutase. Cell-associated superoxide dismutase activity was increased 4-fold in hepatocytes after exposure to superoxide dismutase for 1 h. Each of the inhibitors abolished this increase in the cell-associated superoxide dismutase activity. The uptake of horseradish peroxidase, a measure of fluid phase endocytosis, differed from that of superoxide dismutase in its lower rate, reduced sensitivity to methylamine, and its insensitivity to cytochalasin B. The results of the present study demonstrate that endocytosis of superoxide dismutase is required to protect hepatocytes from the cytotoxicity of hydrogen peroxide. This conclusion may account for some of the conflicting results in the literature with respect to the protective action of superoxide dismutase.  相似文献   

10.
Chlorogenic acid is the major polyphenol in foods derived from plants and is a good substrate for polyphenol oxidase. Chlorogenic acid quinone (CQA-Q), which is an oxidative product of chlorogenic acid by polyphenol oxidase, is an important intermediate compound in enzymatic browning. CQA-Q was prepared, and its properties and the relationship with browning were examined. The quinone solution was yellow or orange, and its molecular absorption coefficient was estimated to be 1.7 x 10(3) for 325 nm and 9.7 x 10(2) for 400 nm in an acidic aqueous solution. Chlorogenic acid and H2O2 were spontaneously generated in the CQA-Q solution as the yellowish color of the solution gradually faded. A pale colored polymer was the major product in the reaction solution. Amino acids such as lysine and arginine added to CQA-Q solution did not repress the fading of the yellowish color of the solution. We concluded from these results that CQA-Q itself and a mixture of CQA-Q and amino acids did not form intensive brown pigments in the acidic aqueous solution. H2O2 spontaneously formed in the CQA-Q solution, and other polyphenols might have played an important role in the formation of the brown color by enzymatic browning.  相似文献   

11.
12.
A study of the uncharacterized serum inhibitors of hyaluronidase, first described half a century ago, was undertaken. Activity was measured against bovine testicular hyaluronidase using a microtiter-based assay and reverse hyaluronan substrate gel zymography. The predominant inhibitory activity was magnesium-dependent and could be eliminated by protease or chondroitinase digestion and by heat treatment. Kinetics of inhibition were similar against hyaluronidases from testis and snake and bee venoms. The inhibitor had no effect on Streptomyces hyaluronidase, indicating that inhibition was not through protection of the hyaluronan substrate. Inhibition levels in serum were increased in mice following carbon tetrachloride or interleukin-1 injection, inducers of the acute-phase response. Reverse zymography identified a predominant band of 120-kDa relative molecular size, with two bands of greater and one of smaller size. The predominant protein was tentatively identified as a member of the inter-alpha-inhibitor family. Inhibition was also observed using either purified inter-alpha-inhibitor or an inter-alpha-inhibitor-related 120-kDa complex. Inter-alpha-inhibitor, found in the hyaluronan-rich cumulus mass surrounding mammalian ova and the coat of fibroblasts and mesothelial cells, may function to stabilize such matrices by protecting against hyaluronidase degradation. Turnover of circulating hyaluronan is extraordinarily rapid, with a half-life of 2-5 min. Prompt increases in levels of serum hyaluronan occur in patients with shock, septicemia, or massive burns, increases that can be attributed, in part, to suppression of degradation by these acute-phase reactants, the inhibitors of hyaluronidase.  相似文献   

13.
Electron spin resonance measurements on aerated melanin suspensions during photoirradiation show changes in the microwave saturation of melanin free radicals and formation of adducts in the presence of spin traps. These observations indicate that oxygen is reduced to superoxide and hydrogen peroxide.  相似文献   

14.
H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ∼40 pmol H2O2·min−1·mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ∼200 pmol H2O2·min−1·mg protein−1 under conditions of compromised antioxidant defense and reduced ubiquinone pool. Thus complex II and the ETF system both contribute to H2O2 productionduring fatty acid oxidation under appropriate conditions.  相似文献   

15.
Cultured hepatocytes pretreated with the ferric iron chelator deferoxamine were resistant to the toxicity of H2O2 generated by either glucose oxidase or by the metabolism of menadione (2-methyl-1,4-naphthoquinone). Ferric, ferrous, or cupric ions restored the sensitivity of the cells to H2O2. Deferoxamine added to hepatocytes previously treated with this chelator prevented the restoration of cell killing by only ferric iron. The free radical scavengers mannitol, thiourea, benzoate, and 4-methylmercapto-2-oxobutyrate protected either native cells exposed to H2O2 or pretreated hepatocytes exposed to H2O2 and given ferric or ferrous iron. Superoxide dismutase prevented the killing of native hepatocytes by either glucose oxidase or menadione. With deferoxamine-pretreated hepatocytes, superoxide dismutase prevented the cell killing dependent upon the addition of ferric but not ferrous iron. Catalase prevented the killing by menadione of deferoxamine-pretreated hepatocytes given either ferric or ferrous iron. Deferoxamine pretreatment did not prevent the toxicity of t-butyl hydroperoxide but did, however, prevent that of cumene hydroperoxide. It is concluded that both ferric iron and superoxide ions are required for the killing of cultured hepatocytes by H2O2. The toxicity of H2O2 is also dependent upon its reaction with ferrous iron to form hydroxyl radicals by the Fenton reaction. The ferrous iron needed for this reaction is formed by the reduction of cellular ferric iron by superoxide ions. Such a sequence corresponds to the so-called iron-catalyzed Haber-Weiss reaction, and the present report documents its participation in the killing of intact hepatocytes by H2O2. Cumene hydroperoxide but not t-butyl hydroperoxide closely models the toxicity of hydrogen peroxide.  相似文献   

16.
17.
18.
Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory actions in the mammalian central nervous system (CNS). Like the cytokines, PDGF primarily signals through tyrosine phosphorylation-dependent pathways that activate multiple intracellular molecules including Janus family kinases. We previously showed that microinjection of PDGF-BB into the lateral ventricle induced a febrile response in rats that was reduced by pretreatment with Win 41662, a potent inhibitor of PDGF receptors (Pelá IR, Ferreira MES, Melo MCC, Silva CAA, and Valenzuela CF. Ann NY Acad Sci 856: 289-293, 1998). In this study, we further characterized the role of PDGF-BB in the febrile response in rats. Microinjection of PDGF-BB into the third ventricle produced a dose-dependent increase in colonic temperature that peaked 3-4 h postinjection. Win 41662 attenuated fever induced by intraperitoneal injection of bacterial lipopolysaccharide, suggesting that endogenous PDGF participates in the febrile response to this exogenous pyrogen. Importantly, febrile responses induced by tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were unchanged by Win 41662. Both indomethacin and dexamethasone blocked the PDGF-BB-induced increase in colonic temperature, and, therefore, we postulate that PDGF-BB may act via prostaglandin- and/or inducible enzyme-dependent pathways. Thus our findings suggest that PDGF-BB is an endogenous CNS mediator of the febrile response in rats.  相似文献   

19.
Inhibition of mitochondrial respiration and free radical induction have been suggested to be involved in haloperidol neurotoxicity. In this study, mice were injected i.p. with haloperidol, according to two different treatments: (a) a single injection (1 mg/kg), sacrificed 1 h after the injection (single-dose model); and (b) two injections (1 mg/kg each), sacrificed 24 h after the first dose (double-dose model). Determinations of oxygen consumption and hydrogen peroxide (H2O2) production rate were carried out in isolated brain mitochondria. Nitric oxide (NO) and superoxide (O2-) production rates were measured in submitochondrial particles (SMP). Single-dose haloperidol treatment produced a 33% inhibition in malate-glutamate-dependent respiration, while no significant changes were found after double-dose treatment. NO production was inhibited by 39 and 54% in SMP from haloperidol-treated mice (single- and double-dose treatments, respectively) (control value: 1.6 +/- 0.2 nmol/min mg protein). NO steady-state concentration was estimated at about 16.5 nM and was decreased by 40% by haloperidol treatment. Increases of 105 and 54% were found in succinate-supported O2- and H2O2 production rates, respectively, after haloperidol single-dose treatment. Haloperidol treatment generated a 248% increase in SMP O2- production rate when measured in the presence of NADH plus rotenone. Our results suggest that haloperidol neurotoxicity would be mediated by a decreased mitochondrial NO production, a decreased intramitochondrial NO steady-state concentration, and by an inhibition of mitochondrial electron transfer with enhancement of O2- and H2O2 production. This inhibition does not seem to be caused by increased NO or ONOO- formation.  相似文献   

20.
Bimetallic nanoparticles consisting of gold and platinum were prepared by a citrate reduction method and complementarily stabilized with pectin (CP-Au/Pt). The percent mole ratio of platinum was varied from 0 to 100%. The CP-Au/Pt were alloy-structured. They were well dispersed in water. The average diameter of platinum nanoparticles (CP-Pt) was 4.7 +/- 1.5 nm. Hydrogen peroxide (H(2)O(2)) was quenched by CP-Au/Pt consisting of more than 50% platinum whereas superoxide anion radical (O(2)(-)) was quenched by any CP-Au/Pt. The CP-Au/Pt quenched these two reactive oxygen species in dose-dependent manners. The CP-Pt is the strongest quencher. The CP-Pt decomposed H(2)O(2) and consequently generated O(2) like catalase. The CP-Pt actually quenched O(2)(-) which was verified by a superoxide dismutase (SOD) assay kit. This quenching activity against O(2)(-) persisted like SOD. Taken together, CP-Pt may be a SOD/catalase mimetic which is useful for medical treatment of oxidative stress diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号