首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity-purified insulin receptor was photoaffinity labeled with a cleavable radioactive insulin photoprobe. Exhaustive digestion of the labeled alpha-subunit with endoproteinase Glu-C produced a major radioactive fragment of 23 kDa as a part of the putative insulin-binding domain. This fragment could contain either residues 205-316 or 518-633 of the alpha-subunit. Rat hepatoma cells and Chinese hamster ovary cells were transfected with cDNA encoding a human insulin receptor mutant with a deletion of the cysteine-rich region spanning amino acid residues 124-319. Insulin binding by these cells was not increased in spite of high numbers of the mutant insulin receptors being expressed. A panel of monoclonal antibodies which was specific for the receptor alpha-subunit and inhibited insulin binding immunoprecipitated the photolabeled 23-kDa receptor fragment but not the receptor mutant. A synthetic peptide containing residues 243-251 was specifically bound by agarose-insulin beads. We therefore suggest that the 23-kDa fragment contains residues 205-316, and that insulin binding occurs, in part, in the cysteine-rich region of the alpha-subunit.  相似文献   

2.
Insulin receptors are disulfide-linked oligotetramers composed of two heterodimers each containing a 130-kDa alpha subunit and a 90-kDa beta subunit. Insulin binds to the extracellular alpha subunit, and in the process stimulates the autophosphorylation of the beta subunit and the expression of tyrosine kinase activity. Studies combining the use of photoaffinity labeling and immunoprecipitation with anti-peptide antibody have directly demonstrated that the cysteine-rich domain, encoded by exon 3, in the alpha subunit is part of the insulin-binding site of the receptor. Experiments with chimeric insulin receptors and chimeric insulin-like growth factor I receptors have confirmed that the cysteine-rich domain constitutes a part of the insulin-binding site. In addition, results from these experiments suggest that the N-terminal sequence, encoded by exon 2, in the alpha subunit also participates in insulin binding. In this review it is proposed that, assuming two insulin-binding sites per each holoreceptor oligotetramer, each insulin-binding domain may contain respectively two sub-domains for hydrophobic and charge contact with insulin, and that high-affinity binding would require the interaction of both subunits with the possibility of each subunit reciprocally contributing one of the sub-domains.  相似文献   

3.
Insulin receptor-specific polyclonal antipeptide serum was generated against a synthetic pentadecapeptide (residues 657-670) of the deduced amino acid sequence of human insulin proreceptor cDNA for use in the analysis of insulin receptors in the retina. The affinity-purified antibodies recognized peptide antigen but not keyhole limpet hemocyanin as determined by dot blot analysis and solid phase radioimmunoassay. Addition of either synthetic peptide or the affinity-purified serum had no effect on 125I-insulin binding to placental membranes or to cells in culture. alpha-Subunits of approximately 125 kDa from human placental membranes and liver membranes were labeled by immunoblot analysis with this antiserum. In membranes isolated from human retina and brain, two classes of alpha-subunits of approximately 125 and 115 kDa were detectable. The 115-kDa subunit was neuraminidase resistant whereas the 125-kDa subunit was digested to a band of 115 kDa, indicating that these bands represent peripheral and neuronal receptors, respectively. Analysis of human retinas obtained from type I diabetic donors revealed an increased level of neuronal receptor as compared with normal retinas. These data indicate that human retina expresses neuronal insulin receptor subtypes that are up-regulated in diabetes.  相似文献   

4.
Insulin receptors derived from highly purified rat liver plasma membranes and Golgi membranes showed differences in insulin-mediated receptor autophosphorylation, even though their insulin-binding characteristics were similar. This difference was related to the generation of a Mr-84,000 fragment of the Mr-90,000 beta subunit of the plasma-membrane receptor, a fragment that was not present in the receptor from Golgi membranes, in the absence of a change in the insulin-binding alpha subunit. When autophosphorylation activity was based on insulin binding, the activity of the plasma-membrane-derived insulin receptor was decreased to 25-30% that of the Golgi-derived receptor. Endoglycosidase F digestion produced changes in the Mr values for both species, but they were not converted into a single subunit, thereby suggesting differences in the protein component of the two subunits. Although the proteinase inhibitors phenylmethanesulphonyl fluoride, ovomucoid and aprotinin failed to block the formation of the Mr-84,000 fragment, the presence of iodoacetamide or EDTA during liver homogenization markedly inhibited fragment generation and allowed the plasma-membrane insulin receptor to retain an autophosphorylation activity comparable with that present in insulin receptors from Golgi membranes. Thus a thiol-sensitive, cation-dependent, degrading activity has been identified that can uncouple the insulin-binding activity of the plasma-membrane insulin receptor from its tyrosine kinase activity.  相似文献   

5.
The insulin-binding and protein tyrosine kinase subunits of the Drosophila melanogaster insulin receptor homolog have been identified and characterized by using antipeptide antibodies elicited to the deduced amino acid sequence of the alpha and beta subunits of the human insulin receptor. In D. melanogaster embryos and cell lines, the insulin receptor contains insulin-binding alpha subunits of 110 or 120 kilodaltons (kDa), a 95-kDa beta subunit that is phosphorylated on tyrosine in response to insulin in intact cells and in vitro, and a 170-kDa protein that may be an incompletely processed receptor. All of the components are synthesized from a proreceptor, joined by disulfide bonds, and exposed on the cell surface. The beta subunit is recognized by an antipeptide antibody elicited to amino acids 1142 to 1162 of the human insulin proreceptor, and the alpha subunit is recognized by an antipeptide antibody elicited to amino acids 702 to 723 of the human proreceptor. Of the polypeptide ligands tested, only insulin reacts with the D. melanogaster receptor. Insulinlike growth factors type I and II, epidermal growth factor, and the silkworm insulinlike prothoracicotropic hormone are unable to stimulate autophosphorylation. Thus despite the evolutionary divergence of vertebrates and invertebrates, the essential features of the structure and intrinsic functions of the insulin receptor have been remarkably conserved.  相似文献   

6.
The abilities of eight extracellular matrix proteins, fibronectin, vitronectin, laminin, and collagen types I, II, III, IV, and V to bind insulin were examined by binding studies with insulin conjugated with peroxidase. At a physiological pH and ionic strength, type V collagen bound to insulin most strongly. The other types of collagen, laminin, and vitronectin also bound insulin with affinity lower than that of type V collagen. The insulin-binding site of type V collagen was in a 30-kDa CNBr fragment of the alpha 1 (V) chain. Analysis of the amino acid sequence showed that this 30-kDa fragment was identical to the heparin-binding fragment of type V collagen. The insulin-binding sites of laminin and vitronectin were located in the A chain and in the heparin-binding domain, respectively. Insulin bound to type V collagen stimulated the synthesis of DNA by mouse mammary tumor MTD cells, indicating that bound insulin retained mitogenic activity.  相似文献   

7.
Our previous studies indicated that amino acid residues 240-250 in the cysteine-rich region of the human insulin receptor alpha-subunit constitute a site in which insulin binds (Yip, C. C., Hsu, H., Patel, R. G., Hawley, D. M., Maddux, B. A., and Goldfine, I. D. (1988) Biochem. Biophys. Res. Commun. 157, 321-329). We have now constructed a human insulin receptor mutant in which 3 residues in this sequence were altered (Thr-Cys-Pro-Pro-Pro-Tyr-Tyr-His-Phe-Gln-Asp to Thr-Cys-Pro-Arg-Arg-Tyr-Tyr-Asp-Phe-Gln-Asp) and have expressed this mutant in rat hepatoma (HTC) cells. When compared with cells transfected with normal insulin receptors, cells transfected with mutant receptors had an increase in insulin-binding affinity and a decrease in the dissociation of bound 125I-insulin. Studies using solubilized receptors also demonstrated that mutant receptors had a higher binding affinity than normal receptors. In contrast, cells transfected with either mutant or normal receptors bound monoclonal antibodies against the receptor alpha-subunit with equal affinity. When receptor tyrosine kinase activity and alpha-aminoisobutyric acid uptake were measured, cells transfected with mutant insulin receptors were more sensitive to insulin than cells transfected with normal receptors. These findings lend further support therefore to the hypothesis that amino acid sequence 240-250 of the human insulin receptor alpha-subunit constitutes one site that interacts with insulin, and they indicate that mutations in this site can influence insulin receptor binding and transmembrane signaling.  相似文献   

8.
Hormone-induced conformational changes in the hepatic insulin receptor   总被引:3,自引:0,他引:3  
The insulin receptor can exist in either a lower or a higher affinity state. Hormone binding alters the equilibrium between the two states of the insulin receptor, favoring the formation of that of higher affinity (Corin, R.E., and Donner, D.B. (1982), J. Biol. Chem. 257, 104-110). After brief or extended incubations with hormone, during which the fraction of higher affinity receptors increased, 125I-insulin was covalently coupled to the alpha subunits of its receptor using disuccinimidyl suberate. Some 125I-insulin remained bound to higher affinity receptors after dissociation of hormone from lower affinity sites. This hormone could also be covalently coupled to the alpha subunit of the receptor. During extended incubations between 125I-insulin and liver plasma membranes, components of the receptor were cleaved to yield degradation products of 120,000 and 23,000 Da. The significance of this process remains undetermined. Unoccupied insulin receptors were cleaved by trypsin to produce fragments of 94,000 and 37,000 Da which remained membrane-bound and could be covalently coupled to 125I-insulin. Trypsin treatment after binding yielded an additional receptor fragment of 64,000 Da. As the incubation time between 125I-insulin and membranes was lengthened, components of the receptor became progressively less sensitive to trypsin. Higher affinity binding sites isolated after release of rapid dissociating insulin were less sensitive to trypsin than were mixtures of higher and lower affinity receptors. These observations suggest that hormone binding produces two conformational changes (alterations of tryptic lability) in the hepatic insulin receptor. The first change is rapid and exposes parts of the receptor to tryptic degradation. The second, slower conformational change renders the receptor less sensitive to trypsin and occurs with the same time course as the increase of receptor affinity mediated by site occupancy.  相似文献   

9.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

10.
The insulin receptor from rat skeletal muscle was characterized. Treatment of muscle membranes with the photoactive insulin analog, 125I[N-epsilonB29-monoazidobenzoyl]-insulin revealed a single protein band of 135,000 Da, the alpha subunit. Iodination of total membrane protein followed by Triton X-100 solubilization and immunoprecipitation demonstrated the presence of a protein band of 90,000 Da, the beta subunit, together with a protein band of 190,000 Da, which may be the receptor precursor. In partially purified receptor preparations, the beta subunit exhibited dose-dependent, insulin-stimulated phosphorylation with incorporation of phosphate solely into tyrosine residues, which was also observed in the 190,000-Da receptor precursor. Purified plasma membranes contained a large amount of insulin-degrading activity which had to be inactivated prior to performing insulin-binding studies. If degradation of insulin was not prevented, apparent enhanced binding in the presence of unlabeled insulin was observed.  相似文献   

11.
Radiolabeled insulin was affinity cross-linked to purified insulin receptor with six separate bifunctional N-hydroxysuccinimide esters of different lengths. Results were qualitatively identical for each cross-linker in that insulin was predominantly cross-linked through its B chain to the receptor's alpha subunit. The maximum efficiencies of cross-linking were 10-15% for the most effective reagents, and this value was dependent upon the concentration and length of the cross-linker. In an effort to locate the cross-linking site, monoiodoinsulin was cross-linked to affinity-purified insulin receptor with disuccinimidyl suberate. Limited proteolysis of the hormone/receptor adduct with Staphylococcus aureus V8 protease, chymotrypsin, or thermolysin in an SDS-containing buffer rapidly generated a 55-kDa, insulin-labeled fragment as shown by SDS-polyacrylamide gel electrophoresis. We reported earlier that the 55-kDa chymotryptic fragment contained multiple internal disulfide bonds as evidenced by its shifting mobility on an SDS gel after dithiothreitol treatment [Boni-Schnetzler et al. (1987) J. Biol. Chem. 262, 8395-8401]. Here we show that the 55-kDa fragment is also formed by proteolysis of the receptor in the absence of prior insulin cross-linking. This fragment was prepared in amounts sufficient for sequence analysis and was purified by passage successively over gel permeation and reverse-phase HPLC columns. The sequence of the fragment's amino terminus corresponds to that of the amino terminus of the receptor's alpha subunit. This fragment also reacts with an antibody raised against a synthetic peptide corresponding to residues 242-253 of the receptor's alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
J Takagi  H Asai  Y Saito 《Biochemistry》1992,31(36):8530-8534
Propolypeptide of von Willebrand factor (pp-vWF) binds to type I collagen, and we have reported that a binding domain exists in a 21.5/21-kDa fragment originated from the C-terminal portion [Takagi, J., Fujisawa, T., Sekiya, F., & Saito, Y. (1991) J. Biol. Chem. 266, 5575-5579]. The collagen-binding property of the 21.5/21-kDa fragment was compared with that of the intact pp-vWF. Although pp-v WF preferentially binds to native type I collagen fibrils, the isolated fragment no longer has this specificity and binds well to collagen of other types in the native and heat-denatured states. In order to determine the critical site that mediates this collagen/gelatin binding, several peptides were synthesized based on the primary structure of the 21.5/21-kDa fragment. Among these, a 25-residue peptide strongly inhibited the binding of the 125I-labeled 21.5/21-kDa fragment to collagen. Using this inhibitory effect as an index, the binding site was defined to the sequence as follows: WREPSFCALS. Furthermore, a decapeptide of this sequence bound to collagen and gelatin, indicating that this sequence is responsible for the binding of the 21.5/21-kDa fragment to collagen/gelatin.  相似文献   

13.
The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.  相似文献   

14.
Two species of insulin-like growth factor-I (IGF-I) receptors in human placenta have been delineated on the basis of their immunoreactivity with an autoantiserum (B-2) to the insulin receptor. When all the IGF-I binding sites in solubilized human placenta were assayed by polyethylene glycol precipitation, a curvilinear Scatchard plot was obtained which could be resolved into two single classes of binding sites: one immunoprecipitable by B-2 IgG and the other, nonimmunoprecipitable. The B-2 reactive sites bound IGF-I with lower affinity (Kd = 7.1 X 10(-10) M) than the B-2 nonreactive sites (Kd = 2.1 X 10(-10) M) and cross-reacted more readily with insulin, the IGF-I/insulin-binding potencies being congruent to 120 and congruent to 1100, respectively. Both receptor subtypes bound IGF-I with congruent to 30-fold higher affinity than multiplication-stimulating activity, and, after affinity cross-linking with 125I-IGF-I, migrated as specific reduced bands of Mr = 138,000 during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunit sizes of the B-2 reactive IGF-I receptor were similar to those of the insulin receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-labeled receptors immunoprecipitated by autoantiserum B-2 or autoantiserum B-10 (which recognizes only insulin receptors) revealed, in both cases, specific reduced bands of Mr = 130,000 and 90,000; the same bands were also seen after sequential precipitation with B-10 and B-2 antisera to enrich the proportion of IGF-I receptors recovered. The presence of two distinct binding and immunoreactive species of IGF-I receptors in human placenta raises the possibility that cell- or tissue-specific isotypes of the IGF-I receptor could mediate the different biological actions of IGF-I.  相似文献   

15.
125I-Insulin binding to rat liver plasma membranes initiated two processes that occurred with similar time courses: an increase of receptor affinity for hormone and degradation of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000. Inhibitors of serine proteinases prevented alpha subunit degradation without affecting the affinity change. This shows that the change of affinity is not produced by receptor proteolysis and that the intact alpha subunit of the insulin receptor can exist as a higher or lower affinity species. Hormone binding was much more rapid than receptor proteolysis and the initial rate of alpha subunit degradation was independent of the concentration of occupied lower affinity receptors. Only persistent hormone binding and the accumulation of higher affinity insulin-receptor complexes led to significant receptor proteolysis. As the incubation time between 125I-insulin and membranes increased, the rate at which hormone dissociated from Mr 135,000 complexes diminished, whereas hormone dissociated from Mr 120,000 complexes slowly after brief or extended incubations. These observations suggest that 125I-insulin binds to membranes to form low affinity complexes that are not substrates for proteolysis. A slow conformational change produces higher affinity hormone-receptor complexes that are selectively degraded. Thus, the conversion between states of affinity may play a role in the regulation of receptor proteolysis and, consequently, insulin action in cells.  相似文献   

16.
Regulation of the insulin receptor kinase by hyperinsulinism   总被引:3,自引:0,他引:3  
A murine fibroblast cell line transfected with human insulin receptor cDNA, NIH 3T3 HIR3.5, was observed to display insulin-induced down-regulation of insulin-binding activity in a time- and concentration-dependent manner. Maximal inhibition of insulin-binding activity (54%) occurred within 16 h of exposure to 100 nM insulin in vivo, where in vivo refers to intact cells in tissue culture. The decrease in cellular insulin-binding activity was the consequence of a decrease in the number of cell-associated insulin receptors as determined by Scatchard analysis of insulin binding, 125I-insulin affinity cross-linking, and Western blotting of the insulin receptor beta subunit. Acute insulin treatment in vivo (1-60 min) resulted in the activation of the insulin receptor protein tyrosine kinase as determined by in vitro phosphorylation of glutamic acid:tyrosine (4:1), where in vitro refers to broken cell preparations. This acute in vivo insulin activation of the insulin receptor tyrosine kinase resulted in a greater stimulation (1.4-1.9-fold) of tyrosine kinase activity in the glutamic acid:tyrosine (4:1) assay than the maximal stimulation produced by insulin treatment in vitro. In contrast, long term (24 h) insulin treatment in vivo resulted in a 50-70% decrease in intrinsic protein tyrosine kinase activity of the insulin receptors compared with that of acutely activated (1 min) insulin receptors. Under these conditions, the insulin receptor protein kinase activity remained insulin independent in the in vitro substrate kinase assay. Surprisingly, the insulin-independent activated (1 min in vivo insulin-treated) and uncoupled (24 h in vivo insulin-treated) insulin receptors displayed similar stoichiometries of 32P incorporation into the beta subunit by in vitro autophosphorylation when compared with the control insulin receptors, ranging from 1.5 to 1.8 mol of phosphate incorporated/mol of insulin receptor. Phosphoamino acid analysis demonstrated that the phosphoserine/phosphothreonine content of in vivo 32P-labeled insulin receptors increased markedly within a 1-h exposure to insulin in vivo, whereas insulin-induced receptor desensitization was not apparent until 10-24 h after exposure to insulin. These data suggest that insulin treatment in vivo results initially in the activation of the insulin receptor kinase followed by a subsequent uncoupling of protein kinase activity. This insulin-induced desensitization of the insulin receptor kinase does not correlate with the extent of beta subunit serine/threonine phosphorylation.  相似文献   

17.
The binding characteristics of the insulin receptor tetramer (alpha 2 beta 2) and dimer (alpha beta) were examined. Unlabelled insulin enhanced the dilution-induced dissociation only of the receptor tetramer-bound 125I-insulin. Furthermore, when both the receptor forms had been preincubated with anti-receptor-antibodies (B9-antiserum), insulin binding only to the receptor tetramer but not to the dimer was inhibited. However, both oligomers are not immunologically distinct since more than 80% of the two forms were immunoprecipitated by the antiserum. These results suggest that both insulin and anti-receptor-antibodies induce cooperative interactions between the two linked alpha-subunits of the receptor tetramer leading to a decrease in insulin binding of this receptor form.  相似文献   

18.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

19.
Proteolytic studies on the structure of bovine von Willebrand factor   总被引:1,自引:0,他引:1  
M A Mascelli  E P Kirby 《Biochemistry》1988,27(4):1274-1284
Bovine von Willebrand factor (vWF) was digested with protease I (P-I), a metalloprotease isolated from rattlesnake venom. Digestion of vWF for 24 h with P-I yielded a terminal digest consisting of an equimolar mixture of two major fragments (apparent Mr 250K and 200K). The 250-kilodalton (kDa) fragment consists of a 125-kDa chain from one subunit and a 45- and 78-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment consists of a 97-kDa chain from one subunit and a 35- and 61-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment binds to heparin, and the heparin binding domain is located on the 97-kDa polypeptide chain. This fragment also competes with labeled, native vWF for binding to formalin-fixed human platelets, with an IC50 of 12.5 micrograms/mL (65 nM). However, native vWF has an IC50 of 2.5 micrograms/mL, indicating that the affinity of the 200-kDa fragment for platelets is approximately one-fifth that of vWF. The 200-kDa fragment agglutinates platelets, but its agglutinating ability is only 5% that of the native molecule. Only the 200-kDa fragment is recognized by monoclonal antibodies 2 and H-9, which are directed against vWF and inhibit vWF binding to platelet glycoprotein Ib (GPIb). Immunological studies, using nine monoclonal antibodies directed against vWF, and the demonstration that the heparin and GPIb binding domains are located on only one fragment suggest that the two fragments are composed of different regions of the vWF subunit. Analysis of the P-I cleavage pattern suggests that all vWF subunits are not cleaved in the same fashion. The first cleavage on half of the subunits generates the 45-kDa terminal and 175-kDa intermediate digest products. The 175-kDa chain is again cleaved, producing the 97- and 78-kDa terminal polypeptide chains. However, the first cleavage of the other subunits generates the 35-kDa terminal and the 186-kDa intermediate digest product, which upon cleavage produces the 125- and 61-kDa terminal polypeptide chains. Immunological data support the asymmetric cleavage pattern. An epitope for a monoclonal antibody is present on both the 186- and 175-kDa intermediate digest products but is only found on one terminal digest fragment, the 78-kDa polypeptide chain, suggesting that the 186- and 175-kDa polypeptides are cleaved at different sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The effect of down-regulation on the intracellular pool of insulin receptors and the role of glycosylation in recovery from down-regulation have been studied in fibroblastic cultures from the skin of non-diabetic mice. In control cultures, 55% of the total specific [125I]insulin-binding activity was in the intracellular compartment. Insulin caused a time- and concentration-dependent decrease in the number of cell surface insulin receptors, with no significant change in total insulin receptors. This decrease in surface receptors was accompanied by an increase in the specific binding of [125I]insulin in the intracellular compartment. Removal of insulin from down-regulated cells resulted in a time-dependent increase in the binding of [125I]insulin to surface receptors, reaching 90% of that in controls by 12 h. The recovery of surface insulin receptors after removal of insulin was blocked by incubation of cultures with tunicamycin, but not by cycloheximide. These results indicate that down-regulation of surface insulin receptors by insulin is associated with translocation of receptors into the intracellular pool and suggest that protein glycosylation is important in insulin receptor recycling and externalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号