共查询到20条相似文献,搜索用时 8 毫秒
1.
An in vitro RNA synthesis system was established in which the influenza virus virion (minus-sense) RNA was made from the synthetic plus-sense RNA (cRNA) template by the purified viral polymerase complex. The cRNA promoter was studied by mutational analysis using the in vitro system, and on the basis of these experiments, the first 11 nucleotides of the 3' noncoding sequence were found to contain the minimum promoter required for virion RNA synthesis. The addition of extra nucleotides at the 3' end decreased the promoter activity of the templates, indicating that the viral polymerase does not recognize an internal promoter efficiently. The wild-type and mutated RNA templates were also tested in vivo by using the ribonucleoprotein transfection system. In contrast to the in vitro system, it was found that the majority of mutations at the 3'-terminal sequence significantly decreased or abolished chloramphenicol acetyltransferase (CAT) expression. These results suggest that the cRNA promoter overlaps other essential cis elements required for chloramphenicol acetyltransferase expression in vivo. 相似文献
2.
Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity 总被引:29,自引:0,他引:29
An RNA-dependent RNA polymerase (replicase) activity that specifically copies brome mosaic virus (BMV) RNAs in vitro can be prepared from BMV-infected barley leaves. The signals directing complementary (minus) strand synthesis reside within the 3' 134-nucleotide-long tRNA-like structure that is common to each of the virion RNAs. By studying the influence of minus strand synthesis of numerous mutations introduced throughout this region of the RNA, we have mapped in detail the sequence and structural elements necessary for minus strand promoter activity. Sequence alterations (either substitutions or small, structurally discrete deletions) in most parts of the tRNA-like structure resulted in decreased minus strand synthesis. This suggests that BMV replicase is a large enzyme, possibly composed of several subunits. The lowest activities, 5 to 8% of wild type, were observed for mutants with substitutions at three separate loci, identifying one structural and two sequence-specific elements essential for optimal promoter activity. (1) Destabilization of the pseudoknot structure in the aminoacyl acceptor stem resulted in low promoter activity, demonstrating the importance of a tRNA-like conformation. (2) Substitution of the C residue adjacent to the 3' terminus resulted in low promoter activity, probably by interfering with strand initiation. (3) The low activities resulting from substitutions and a small deletion in arm C suggest this region of the RNA to be a major feature involved in replicase binding. In particular, nucleotides within the loop of arm C appear to be involved in a sequence-specific interaction with the replicase. 相似文献
3.
4.
Noble E Mathews DH Chen JL Turner DH Takimoto T Kim B 《The Journal of biological chemistry》2011,286(26):22965-22970
Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5'- and 3'-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3'-RNA and a 15-mer 5'-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3'-G3U mutation, as well as a promoter containing the compensatory 3'-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5' and 3' sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication. 相似文献
5.
6.
7.
Gog JR Afonso Edos S Dalton RM Leclercq I Tiley L Elton D von Kirchbach JC Naffakh N Escriou N Digard P 《Nucleic acids research》2007,35(6):1897-1907
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses. 相似文献
8.
9.
10.
The influenza virus RNA-dependent RNA polymerase protein complex contains an associated RNA endonuclease activity, which cleaves host mRNA precursors in the cell nucleus at defined positions 9-15 nucleotides downstream of the cap structure. This reaction provides capped oligoribonucleotides, which function as primers for the initiation of viral mRNA synthesis. The endonuclease reaction is dependent on the presence of divalent metal ions. We have used a number of divalent and trivalent metal ions alone and in combination to probe the mechanism of RNA cleavage by the influenza virus endonuclease. Virus-specific cleavage was observed with various metal ions, and maximum cleavage activity was obtained with 100 microM Mn2+ or 100 microM Co2+. This activity was about 2-fold higher than that observed with Mg2+ at the optimal concentration of 1 mM. Activity dependence on metal ion concentration was cooperative with Hill coefficients close to or larger than 2. Synergistic activation of cleavage activity was observed with combinations of different metal ions at varying concentrations. These results support a two-metal ion mechanism of RNA cleavage for the influenza virus cap-dependent endonuclease. The findings are also consistent with a structural model of the polymerase, in which the specific endonuclease active site is spatially separated from the nucleotidyl transferase active site of the polymerase module. 相似文献
11.
12.
13.
14.
15.
16.
Influenza A virus nucleoprotein (NP) forms homo-oligomers and multiple copies of NP wrap around genomic RNA, along with a
trimeric polymerase making up ribonucleoprotein (RNP) complex. Sequence comparison of more than 2500 influenza A NP showed
that this protein contains 30.1 % of polymorphic residues. NP is composed of a head and a body domain and a tail loop/ linker
region. The head domain is more conserved than the body domain, as revealed from the structure-based sequence alignment. NP
oligomerization is mediated by the insertion of the non-polymorphic and structurally conserved tail loop of one NP molecule
to a groove of another NP. The different form of NP oligomers is due to the flexibility of the polymorphic linkers that join
the tail loop to the rest of the protein. The RNA binding property of NP is known to involve the protruding element and the
flexible basic loop between the head and body domains, both having high degree of primary sequence conservation. To bind RNA,
NP may first capture the RNA by the flexible basic loop and then the RNA is clamped by the protruding element. 相似文献
17.
Ushakova TA Puchkova LI Gutorov VV Totmenina OD Repin VE 《Prikladnaia biokhimiia i mikrobiologiia》2008,44(1):34-37
A strain producing a restriction endonuclease was isolated from soil samples and identified as the Arthrobacter sp. strain Ck256. The enzyme produced by this strain was termed Asi2561. The isolation procedure for this enzyme was described, and the optimal conditions for its function were determined. It was shown that the restriction endonuclease Asi256I is a true isoschizomer of MboI, it has a temperature optimum of 6 degrees C, and can be used in molecular-biological and genetic-engineering studies performed at low temperatures. 相似文献
18.
Guanosine-5'-diphosphate at the 5' termini of reovirus RNA: evidence for a segmented genome within the virion 总被引:8,自引:0,他引:8
All ten double-stranded RNA fragments isolated from purified reovirus contain ppGp at the 5′ termini. The presence of a unique 5′-terminal nucleotide indicates that the viral genome in situ consists of segments which are synthesized as discrete units in infected cells. The penultimate base is a pyrimidine. This 5′ sequence, ppGpPyp, is identical to that reported previously for the ten reovirus messenger RNA species synthesized in vitro. The results indicate that the double-stranded RNA segments are perfect duplexes which are transcribed end-to-end by the virion-associated RNA polymerase. 相似文献
19.
Thermodynamically predicted secondary structure analysis of the 3'-terminal 305 nucleotides (nt) of the rubella virus (RUB) genome, a region conserved in all RUB defective interfering RNAs, revealed four stem-loop (SL) structures; SL1 and SL2 are both located in the E1 coding region, while SL3 and SL4 are within the 59-nt 3' untranslated region (UTR) preceding the poly(A) tract. SL2 is a structure shown to interact with human calreticulin (CAL), an autoantigen potentially involved in RUB RNA replication and pathogenesis. RNase mapping indicated that SL2 and SL3 are in equilibrium between two conformations, in the second of which the previously proposed CAL binding site in SL2, a U-U bulge, is not formed. Site-directed mutagenesis of the 3' UTR with a RUB infectious clone, Robo302, revealed that most of the 3' UTR is required for viral viability except for the 3'-terminal 5 nt and the poly(A) tract, although poly(A) was rapidly regenerated during subsequent replication. Maintenance of the overall SL3 structure, the 11-nt single-stranded sequence between SL3 and SL4, and the sequences forming SL4 were all important for viral viability. Studies on the interaction between host factors and the 3' UTR showed the formation of three RNA-protein complexes by gel mobility shift assay, and UV-induced cross-linking detected six host protein species, with molecular masses of 120, 80, 66, 55, 48, and 36 kDa, interacting with the 3' UTR. Site-directed mutagenesis of SL2 by nucleotide substitutions showed that maintenance of SL2 stem rather than the U-U bulge was critical in CAL binding since mutants having the U-U bulge base paired had a similar binding activity for CAL as the native structure whereas mutants having the SL2 stem destabilized had much lower binding activity. However, all of these mutations gave rise to viable viruses when introduced into Robo302, indicating that binding of CAL to SL2 is independent of viral viability. 相似文献
20.
The 5' sequence of Sindbis viral RNA is m (7)G(5') pppApUpGp... 相似文献