首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim N  Xiao R  Choi H  Jo H  Kim JH  Uhm SJ  Park C 《Molecules and cells》2011,31(1):39-48
Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd(3J)-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd(3J)-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward.  相似文献   

2.
The molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcd(Sid) mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcd(Sid) mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable.  相似文献   

3.
We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.  相似文献   

4.
To identify the kinds of cells in the brain that express the yes proto-oncogene, we examined chicken brains by using immunofluorescent staining and in situ hybridization. Both approaches showed that the highest level of the yes gene product was in cerebellar Purkinje cells. In addition, we analyzed Purkinje cell degeneration (pcd) mutant mice. The level of yes mRNA in cerebella of pcd mutants was four times lower than that found in cerebella of normal littermates. Our studies point to Purkinje cells as an attractive model for functional studies of the yes protein.  相似文献   

5.
The Purkinje cell degeneration (PCD) mutant mouse is characterized by a degeneration of cerebellar Purkinje cells and progressive ataxia. To identify the molecular mechanisms that lead to the death of Purkinje neurons in PCD mice, we used Affymetrix microarray technology to compare cerebellar gene expression profiles in pcd3J mutant mice 14 days of age (prior to Purkinje cell loss) to unaffected littermates. Microarray analysis, Ingenuity Pathway Analysis (IPA) and expression analysis systematic explorer (EASE) software were used to identify biological and molecular pathways implicated in the progression of Purkinje cell degeneration. IPA analysis indicated that mutant pcd3J mice showed dysregulation of specific processes that may lead to Purkinje cell death, including several molecules known to control neuronal apoptosis such as Bad, CDK5 and PTEN. These findings demonstrate the usefulness of these powerful microarray analysis tools and have important implications for understanding the mechanisms of selective neuronal death and for developing therapeutic strategies to treat neurodegenerative disorders.  相似文献   

6.
F3/contactin (CNTN1) and TAG-1 (CNTN2) are closely related axonal glycoproteins that are differentially regulated during development. In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer. However, as these cells begin radial migration, TAG-1 is replaced by F3/contactin. To address the significance of this differential regulation, we have generated transgenic mice in which F3/contactin expression is driven by TAG-1 gene regulatory sequences, which results in premature expression of F3/contactin in granule cells. These animals (TAG/F3 mice) display a developmentally regulated cerebellar phenotype in which the size of the cerebellum is markedly reduced during the first two postnatal weeks but subsequently recovers. This is due in part to a reduction in the number of granule cells, most evident in the external germinal layer at postnatal day 3 and in the inner granular layer between postnatal days 8 and 11. The reduction in granule cell number is accompanied by a decrease in precursor granule cell proliferation at postnatal day 3, followed by an increase in the number of cycling cells at postnatal day 8. In the same developmental window the size of the molecular layer is markedly reduced and Purkinje cell dendrites fail to elaborate normally. These data are consistent with a model in which deployment of F3/contactin on granule cells affects proliferation and differentiation of these neurons as well as the differentiation of their synaptic partners, the Purkinje cells. Together, these findings indicate that precise spatio-temporal regulation of TAG-1 and F3/contactin expression is critical for normal cerebellar morphogenesis.  相似文献   

7.
The cerebellar cortex of many vertebrates shows a striking parasagittal compartmentation that is thought to play a role in the establishment and maintenance of functional cerebellar connectivity. Here, we demonstrate the existence of multiple parasagittal raphes of cells in the molecular layer of the developing cerebellar cortex of postnatal mouse. The histological appearance and immunostaining profile of the raphe cells suggest that they are migrating granule cells. We therefore conclude that the granule cell raphes previously described in birds also exist in a mammalian species. The raphes in mouse are visible on nuclear stains from around birth to postnatal day 6 and are frequently found at the boundaries of Purkinje cell segments that differentially express cadherins ("early-onset" parasagittal banding pattern). A similar relation between the raphe pattern and various markers for the early-onset banding pattern has been found in the chicken cerebellum. One of the cadherins mapped in the present study (OL-protocadherin) continues to be expressed in specific Purkinje cell segments until at least postnatal day 14. At this stage of development, the borders of the OL-protocadherin-positive Purkinje cell segments coincide with the borders of Purkinje cell segments that express zebrin II, a marker for the "late-onset" parasagittal banding pattern which persists in the adult cerebellum. These findings demonstrate that the early-onset banding pattern, as reflected in the complementary arrangement of raphes/Purkinje cell segments, and the late-onset pattern of zebrin II expression share at least some positional cues during development.  相似文献   

8.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

9.
The weeble mutant mouse has a frame shift mutation in inositol polyphosphate 4-phosphatase type I (Inpp4a). The phenotype is characterized by an early onset cerebellar ataxia and neurodegeneration, especially apparent in the Purkinje cells. Purkinje cell loss is a common pathological finding in many human and mouse ataxic disorders. Here we show that in the Inpp4awbl mutant, Purkinje cells are lost in a specific temporal and spatial pattern. Loss occurs early in postnatal development; however, prior to the appearance of climbing fibers in the developing molecular layer, the mutant has a normal complement of Purkinje cells and they are properly positioned. Degeneration and reactive gliosis are present at postnatal day 5 and progress rapidly in a defined pattern of patches; however, Inpp4a is expressed uniformly across Purkinje cells. In late stage mutants, patches of surviving Purkinje cells appear remarkably normal with the exception that the climbing fibers have been excessively eliminated. Surviving Purkinje cells express Eaat4, a glutamate transporter that is differentially expressed in subsets of Purkinje cells during development and into adult stages. Prior to Purkinje cell loss, reactive gliosis and dendritic atrophy can be seen in Eaat4 negative stripes. Our data suggest that Purkinje cell loss in the Inpp4awbl mutant is due to glutamate excitotoxicity initiated by the climbing fiber, and that Eaat4 may exert a protective effect.  相似文献   

10.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

11.
To search for genes involved in determining the morphology of individual neuronal types, a cDNA library was constructed from postnatal day 13 mouse cerebellum. From this library, 2 clones, L7 and L19, were isolated by a differential hybridization procedure and shown by in situ hybridization to be Purkinje cell-specific within the cerebellum. Both RNAs appear between postnatal days 4 and 8 and continue into adulthood, coinciding with terminal differentiation of the Purkinje cells. L7 seems to be expressed exclusively in the cerebellum, whereas L19 is expressed throughout the brain. Consistent with the RNA localization, L7 protein is found only in the cerebellum and is confined to the Purkinje cells. The L7 amino acid sequence has been deduced from the cDNA sequence, and a pseudo-repeat within the L7 protein sequence is homologous to the amino acids sequence in the primary translation product of the gene for human sis/PDGF.  相似文献   

12.
In the Dlk1-Dio3 imprinted domain, an intergenic differentially methylated region (IG-DMR) regulates the parental allele-specific expression of imprinted genes. The maternally inherited deletion of IG-DMR (IG-DMR(−/+)) results in perinatal lethality because of the overexpression of paternally expressed genes and repression of maternally expressed noncoding RNAs (ncRNAs), including Gtl2. To better understand the possible contribution of paternally expressed genes to the lethality, we attempted to rescue the lethality of IG-DMR(−/+) mutants by restoring the paternally expressed genes. Because the paternally inherited Gtl2 deletion (Gtl2(+/−)) induced a decrease in the expression of paternally expressed genes, we crossed female IG-DMR heterozygous mice and male Gtl2 heterozygous mutant mice. The resultant IG-DMR(−/+)/Gtl2(+/−) double mutant mice had normal expression levels of paternally expressed genes, and none of them showed perinatal lethality; however, most mice showed postnatal lethality with decreased expression of the maternally expressed ncRNAs. Thus, we inferred that paternally expressed genes are necessary for perinatal survivability and that maternally expressed ncRNAs are involved in postnatal lethality.  相似文献   

13.
A significant reduction in the content of two members of the sulfoglucuronyl-neolacto series of glycolipids (SGGLs), 3-sulfoglucuronyl-lacto-N-neotetraosylceramide (SGGL-1) and 3-sulfoglucuronyl lacto-N-norhexaosylceramide (SGGL-2), in the cerebellum of the Purkinje cell abnormality mutants, Purkinje cell degeneration (pcd/pcd), lurcher (Lc/+), and staggerer (sg/sg), was also confirmed in the mildly affected nervous (nr/nr) mutant. The expression of SGGLs was studied during development of the pcd/pcd mutant cerebellum, and it was shown that the rate of decline in the level of SGGLs practically coincided with the loss of Purkinje cell perikarya. This indicated that SGGLs are primarily localized in Purkinje cells and that initially, at least, there is no genetic defect in the biosynthesis of SGGLs in the mutant. The precursors of SGGLs, viz., lacto-N-neotetraosylceramide (paragloboside) and lacto-N-norhexaosylceramide, as well as other glycolipids derived from these precursors, such as X-determinant fucoglycolipids and disialosyllacto-N-neotetraosylceramide, were also present in normal cerebellum. Levels of paragloboside and its other derivatives, similar to SGGLs, were also significantly reduced in the Purkinje cell abnormality mutants pcd/pcd, sg/sg, Lc/+, and nr/nr but were normal in other cerebellar mutants, such as quaking (qk/qk), weaver (wv/wv), and reeler (rl/rl), where Purkinje cells are not involved. Thus, the entire paragloboside family of glycolipids is primarily associated with Purkinje cells in the cerebellum. Although levels of monoclonal antibody HNK-1-reactive glycolipids were reduced in the Purkinje cell abnormality mutants, HNK-1-reactive glycoproteins were not affected in these mutants.  相似文献   

14.
Sulfoglucuronyl glycolipids (SGGLs) are temporally and spatially regulated molecules present in the nervous system during its development. The characteristics of the rat brain enzyme glucuronyltransferase involved in the biosynthesis of SGGLs have been described. The enzyme catalyzes the transfer of glucuronic acid (GlcA) from UDP-GlcA to terminal galactose of the neolacto (type 2) series of glycolipids to form beta 1-3-linked glucuronyl neolacto glycolipids. The enzyme was highly specific for the neolacto series of acceptor glycolipids, neolactotetraosylceramide (nLcOse4Cer), neolactohexaosylceramide (nLcOse6-Cer), and neolactooctaosylceramide (nLcOse8Cer) and was different from the drug-inducible phenol:GlcA transferase. Considerable activity of GlcA transferase was present in the adult rat cerebral cortex, even though SGGLs almost completely disappeared from the cortex by postnatal day 15. In the cerebellum, although levels of SGGLs increased with development, the specific activity of GlcA transferase declined. The results indicated that GlcA transferase was not a regulatory enzyme controlling the expression of SGGLs. Measurements of the levels of nLcOse4Cer and nLcOse6Cer in these neural tissues indicated that the availability of these precursors may regulate the differential expression of SGGLs seen previously. GlcA transferase was significantly reduced in the cerebellar Purkinje cell degenerating murine mutant (pcd/pcd), which is consistent with the loss of SGGLs in the cerebellum of this mutant and specific association of these glycolipids with Purkinje cells.  相似文献   

15.
16.
Cerebellar deficient folia (cdf) is a recently identified mouse mutation causing ataxia and cerebellar abnormalities including lobulation defects and abnormal placement of a specific subset of Purkinje cells. To understand the etiology of the cerebellar defects in cdf mutant mice, we examined postnatal development of the cdf/cdf cerebellum. Our results demonstrate that Purkinje cell ectopia and foliation defects are apparent at birth, suggesting the cdf mutation disrupts the positioning of many, but not all, Purkinje cells during development. In addition to cerebellar abnormalities, we observed lamination defects in the hippocampus of cdf mutant mice, although neocortical defects were not seen. Furthermore, ectopic Purkinje cells in cdf/cdf mice express an increased level of Dab1 protein, as previously observed in mice with mutations in genes in the reelin signaling pathway. Lastly, analysis of cdf <-->ROSA26 chimeric mice demonstrated that the cdf mutation is intrinsic to Purkinje cells. We suggest that the cdf gene product is required in a subset of Purkinje cells, possibly to respond to Reelin signals.  相似文献   

17.
D-type Gl cyclins are the primary cell cycle regulators of G1/S transition in eukaryotic cells, and are differentially expressed in a variety of cell lines in vitro. Little is known, however, about the expression patterns of D-type G1 cyclins in normal mouse in vivo. Thus, in the present study, tissue-specific expressions of cyclin D1 and D3 genes were examined in several tissues derived from adult male mice, and stage-specific expression of cyclin genes was studied in brain, liver, and kidney of developing mice from embryonic day 13 to postnatal day 11. Cell cycle-dependent expression of cyclins was also examined in regenerating livers following partial hepatectomy. Our results indicate that (l) cyclins Dl and D3 are expressed in a tissue-specific manner, with cyclin Dl being highly expressed in kidney and D3 in thymus; (2) cyclin D3 mRNA is abundantly expressed in young proliferating tissues and is gradually reduced during development, whereas cyclin Dl mRNA fluctuates during development; and (3) compensatory regeneration of liver induces cyclin Dl gene expression 12 hr after partial hepatectomy, and cyclin D3 gene expression from 36 to 42 hr (at the time of G1/S transition). In conclusion, this study indicates that cyclin D1 and D3 genes are differentially expressed in vivo in a tissue-specific, developmental stage-dependent, and cell cycle-dependent manner. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Abstract: The lacto series of glycolipids are only minor constituents in mammalian CNS and are found mostly during development. Expression of a significant amount (70 μg of neuraminic acid/g dry weight) of disialosyl-lacto- N -neotetraosylceramide (LD1) in adult mouse cerebellum is reported for the first time in the nervous system. The structure of this ganglioside was determined by hydrolysis with various glycosidases, immunochemical tests, sugar and fatty acid analyses after permethylation and capillary GLC-mass spectrometry, sugar linkage analysis of permethylated alditol acetates, and fast-atom bombardment-mass spectrometry of the native ganglioside. The structure of LD1 was determined to be NeuAc-NeuAc α 2-3Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc β 1-1-ceramide. The major fatty acid was 18:0, and the long-chain base was C18-sphingenine. Mouse cerebellum also contained O -acetyl-LD1 and several other O -acetylated gangliosides as recognized by monoclonal antibodies ME311 and 3G5. The levels of LD1 and O -acetyl-LD1 in cerebellum increased during postnatal development. During development of the Purkinje cell degeneration mutant, pcd/pcd , the levels of both of these gangliosides in the cerebellum declined with the loss of Purkinje cells, a finding indicating that these gangliosides are primarily associated with Purkinje cells. In the cortex, LD1, O -acetyl-LD1, and O -acetyl GD3, like GD3, are developmentally regulated antigens and are only expressed in the fetal cortex and not to any significant extent in the adult.  相似文献   

19.
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号