共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Racemic 2-hydroxy octanoic acid methyl ester was optically resolved by lipase-catalyzed hydrolysis in a biphasic membrane reactor using hydrophilic/hydrophobic capillary membranes. In a buffer/hexane biphasic membrane reactor using hydrophilic ultrafiltration membranes, (S)-2-hydroxy octanoic acid was recovered from the aqueous phase at 59–67% yield and 0.9–0.92 enantiomeric excess (ee), and the ester of (R)-isomer was recovered from the organic phase at 73–75% yield and 0.92–0.99 ee. 相似文献
3.
A membrane enzyme reactor consisting of variable pieces of replaceable cell-immobilized membranes was proposed for the continuous production of bioproducts. To demonstrate the characteristics of the reactor, cell-immobilized membranes were prepared by the entrapment of permeabilized recombinant Escherichia coli cells containing penicillin G acylase within the gluten matrices. A stainless-steel net that was created with a mesh frame was used to support each gluten membrane so that the membranes could be filled into the rectangular-shaped reactor. The reactor equipped with either six or 12 pieces of cell-immobilized gluten membranes containing a biomass concentration of 5%, w/w was effective in catalyzing the production of 6-aminopenicillanic acid from penicillin G. In comparison with intact cells, the cell-immobilized preparation was more stable and the half-life time of the immobilized cell-associate enzyme in gluten membrane was estimated to be 36 days by a long-term operation. As the substrate solution was forced to flow through the reactor equipped with six membranes and in the direction perpendicular to the membranes, the pressure drop was determined to be less than 50 cm H(2)O with a flow-rate up to 50 mL/min. This low pressure due to the porous structure of gluten membrane would lead to a lower operational cost. Increasing either the number of membranes or the area of each cell-immobilized membrane can easily do scaling-up of this membrane reactor. 相似文献
4.
A kinetic resolution process for the production of chiral amines was developed using an enzyme-membrane reactor (EMR) and a hollow-fiber membrane contactor with (S)-specific omega-transaminases (omega-TA) from Vibrio fluvialis JS17 and Bacillus thuringiensis JS64. The substrate solution containing racemic amine and pyruvate was recirculated through the EMR and inhibitory ketone product was selectively extracted by the membrane contactor until enantiomeric excess of (R)-amine exceeded 95%. Using the reactor set-up with flat membrane reactor (10-mL working volume), kinetic resolutions of alpha-methylbenzylamine (alpha-MBA) and 1-aminotetralin (200 mM, 50 mL) were carried out. During the operation, concentration of ketone product, i.e., acetophenone or alpha-tetralone, in a substrate reservoir was maintained below 0.1 mM, suggesting efficient removal of the inhibitory ketone by the membrane contactor. After 47 and 32.5 h of operation using 5 U/mL of enzyme, 98.0 and 95.5% ee of (R)-alpha-MBA and (R)-1-aminotetralin were obtained at 49.5 and 48.8% of conversion, respectively. A hollow-fiber membrane reactor (39-mL working volume) was used for a preparative-scale kinetic resolution of 1-aminotetralin (200 mM, 1 L). After 133 h of operation, enantiomeric excess reached 95.6% and 14.3 g of (R)-1-aminotetralin was recovered (97.4% of yield). Mathematical modeling of the EMR process including the membrane contactor was performed to evaluate the effect of residence time. The simulation results suggest that residence time should be short to maintain the concentration of the ketone product in EMR sufficiently low so as to decrease conversion per cycle and, in turn, reduce the inhibition of the omega-TA activity. 相似文献
5.
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. 相似文献
6.
Chunyuan Li Ping Wang Dantong Zhao Yueming Cheng Lei Wang Liping Wang Zhi Wang 《Journal of Molecular Catalysis .B, Enzymatic》2008,55(3-4):152-156
The lipase from Bacillus subtillus (BSL2), a highly active lipase expressed from newly constructed strain of Bacillus subtilis BSL2, is used in the kinetic resolution of glycidyl butyrate. A high enantiomeric ratio (E = 108) was obtained by using 1,4-dioxane as co-solvent (18%, v/v) and decreasing the reaction temperature to 5 °C. The ratio is about 16-fold more than that (E = 6.52) obtained in pure buffer solutions (25 °C, pH 7.8). Under the optimum conditions, the remained (R)-glycidyl butyrate with high enantiopure (ee > 98%) was obtained when the conversion was above 52%. 相似文献
7.
Park Sung-Soo Joo Hwang-Soo Cho Seung Il Kim Min-Su Kim Yong-Kweon Kim Byung-Gee 《Biotechnology and Bioprocess Engineering》2003,8(4):257-262
A straightforward and effective method is presented for immobilizing enzymes on a microchip platform without chemically modifying
a micro-channel or technically microfabricating a column reactor and fluid channel network. The proposed method consists of
three steps: the reconstitution of a nitrocellulose (NC) membrane on a plane substrate without a channel network, enzyme immobilization
on the NC membrane, and the assembly of another substrate with a fabricated channel network. As a result, enzymes can be stably
and efficiently immobilized on a microchip. To evaluate the proposed method, two kinds of enzymatic reaction are applied:
a sequential two-step reaction by one enzyme, alkaline phosphatase, and a coupled reaction by two enzymes, glucose oxidase
and peroxidase, for a glucose assay. 相似文献
8.
To investigate the effect of diffusional limitations and heterogeneous cell distribution in a gel-immobilized cell system, a gel membrane reactor has been constructed. The reactor consists essentially of a gel layer with immobilized cells, flanked by two well-mixed chambers. Through one chamber substrate is pumped, and this chamber is the equivalent of the outside of a spherical gel bead. The second closed measuring chamber contains a small quantity of liquid that can equilibrate with the inside surface of the membrane, eventually after a long transient. Analysis of the liquid in this chamber can give direct information on substrate and product concentrations at the gel surface, and is and indication of the situation in the center of a gel bead. The gel membrane reactor appears to be an excellent tool to study diffusion and reaction in a gel-containing immobilized cells. A mathematical model with time- and position-dependent cell concentration and diffusion coefficient is described. Experimental data show the effective diffusion coefficient of glucose in an alginate gel to decrease with yeast cell concentration. Moreover, kinetic parameters could be determined, using the mathematical model. Microscopic analysis confirmed the proliferation of the gel-entrapped microorganisms in the outer layer of the matrix, as predicted by the model. Potentially, this type of reactor has a clear potential to study the physiology of gel-immobilized cells. (c) 1992 John Wiley & Sons, Inc. 相似文献
9.
AbstractIn this study, the non-magnetic and the magnetic cross-linked enzyme aggregates (CLEAs) from Candida rugosa lipase were synthesized to catalyze the kinetic resolution reaction of naproxen methyl ester (NME). Magnetic iron oxide nanoparticles (MIONPs) were produced through co-precipitation method and their surfaces were modified by silanization reaction. The MIONPs were used as a platform to synthesize the magnetic CLEAs (M-CLEAs). The biocatalysts and MIONPs synthesized were characterized by FTIR spectroscopy and SEM analysis. The kinetic resolution of racemic NME was studied in aqueous buffer solution/isooctane biphasic system to compare the performance of M-CLEAs and CLEAs. The effects of reaction parameters such as temperature, pH, stirring rate on the enantiomeric excess of the substrate (ees%) were investigated in a batch reactor system. The activity recovery of CRL enzyme in CLEAs was higher than M-CLEAs. Compared with M-CLEAs, CLEAs biocatalysts had previously reached ees% values. Although both biocatalysts showed similar cavity structure from SEM analysis, the lower performance of M-CLEAs may be due to the different microenvironments of M-CLEAs from CLEAs. However, the reusability performance of M-CLEAs was higher than that of CLEAs. The optimal reaction conditions for M-CLEAs and CLEAs were found to be 37?°C, pH 7.5, and 300?rpm. 相似文献
10.
Gutman AL Meyer E Kalerin E Polyak F Sterling J 《Biotechnology and bioengineering》1992,40(7):760-767
An enzymatic process has been developed for the continuous production of the pharmaceutically important intermediate (R)-1-aminoindan and of the chiral resolving agent (R)-1-(1-naphthyl)ethylamine. The process consists of the subtilisin catalyzed stereoselective aminolysis of the racemic primary amine with an active ester in organic solvent. The competing nonenzymatic reaction has been suppressed by appropriate choice of solvent and reactant's concentration and by minimizing the time of contact between the amine and the active ester. Subtilisin was immobilized on glass beads and the reaction carried out in a continuous-flow column bioreactor. By using a 450-mL column bioreactor containing 5.7 g of subtilisin immobilized on 570 g of glass beads, 1.6 kg of racemic 1-(1-naphthyl)ethylamine was resolved after 320 h of continuous operation with only a slight loss of the enzymatic activity. During the whole process, the optical purity of the chiral amine eluting from the column was higher than 90%. A facile procedure was developed for separating the unreacted (R)-amine from the (S)-amide and for the recycling of the solvent 3-methyl-3-pentanol and the active ester 2,2,2-trifluoroethyl butyrate. (c) 1992 John Wiley & Sons, Inc. 相似文献
11.
Horse liver alcohol dehydrogenase (HLADH) has been non‐covalently immobilized on an immobilized artificial membrane (IAM) high‐performance liquid chromatography (HPLC) stationary phase. The resulting IAM‐HLADH retained the reductive activity of native HLADH as well as the enzyme's enantioselectivity and enantiospecificity. HLADH was also immobilized in an IAM HPLC stationary phase prepacked in a 13 × 4.1 mm ID column to create an immobilized enzyme reactor (HLADH‐IMER). The reactor was connected through a switching valve to a column containing a chiral stationary phase (CSP) based upon p‐methylphenylcarbamate derivatized cellulose (Chiralcel OJR‐CSP). The results from the combined HLADH‐IMER/CSP and chromatographic system demonstrate that the enzyme retained its activity and stereoselectivity after immobilization in the column and that the substrate and products from the enzymatic reduction could be transferred to a second column for analytical or preparative separation. The combined HLADH‐IMER/CSP system is a prototype for the preparative on‐line use of cofactor‐dependent enzymes in large‐scale chiral syntheses. Chirality 11:39–45, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
12.
The present study deals with kinetic modeling of enzyme-catalyzed reactions by integral progress curve analysis, and shows how to apply this technique to kinetic resolution of enantiomers. It is shown that kinetic parameters for both enantiomers and the enantioselectivity of the enzyme may be obtained from the progress curve measurement of a racemate only.A parameter estimation procedure has been established and it is shown that the covariance matrix of the obtained parameters is a useful statistical tool in the selection and verification of the model structure. Standard deviations calculated from this matrix have shown that progress curve analysis yields parameter values with high accuracies.Potential sources of systematic errors in (multiple) progress curve analysis are addressed in this article. Amongst these, the following needed to be dealt with: (1) the true initial substrate concentrations were obtained from the final amount of product experimentally measured (mass balancing); (2) systematic errors in the initial enzyme concentration were corrected by incorporating this variable in the fitting procedure as an extra parameter per curve; and (3) enzyme inactivation is included in the model and a first-order inactivation constant is determined.Experimental verification was carried out by continuous monitoring of the hydrolysis of ethyl 2-chloropropionate by carboxylesterase NP and the alpha-chymotrypsin-catalyzed hydrolysis of benzoylalanine mathyl ester in a pH-stat system. Kinetic parameter values were obtained with high accuracies and model predictions were in good agreement with independent measurements of enantiomeric excess values or literature data. (c) 1994 John Wiley & Sons, Inc. 相似文献
13.
This review is a journey concerning the investigations of the kinetic resolution of racemic ibuprofen for the last 20 years. The relevancy of the pharmacological uses of the S(?+?) enantiomer along with its higher cost compared with racemic profen are the driving forces of a variety of scientific research studies addressing the enzymatic resolution of ibuprofen through enantiomeric esterification using lipases as biocatalysts. Lipases of fungal sources such as Candida rugosa, Rhizomucor miehei and the lipase B of Candida antarctica have been extensively studied both in homogeneous and heterogeneous (immobilized on solid supports) processes. In this context, the various alcohols and organic co-solvents frequently used in the esterification of racemic ibuprofen are summarized and discussed in this review. Moreover, recent investigations using membranes as reactors coupled with the separation of the desired product and microfluidic devices are presented. Finally, some guidelines about future perspectives regarding the technology of the kinetic resolution of profens and research niches are given. 相似文献
14.
Use of a lipase immobilized in a membrane reactor to hydrolyze the glycerides of butteroil 总被引:2,自引:0,他引:2
A lipase from A spergillus niger, immobilized by adsorption on a microporous, polypropylene flat-sheet membrane, was used to effect the continous hydrolysis of the glycerides of melted butterfat at 35°C. For the reaction conditions used in this research, a pseudo-zero order rate expression can be used to model the kinetics of the overall hydrolysis of butterfat. Multiresponse nonlinear regression methods were employed to determine the kinetic parameters of a multisubstrate rate expression derived fro ma mechanism based on the general Michaëlis–Menten approach. For the multiresponse data taken at pH 7.0, the dependence of the maximum rate of release of each fatty acid residue of butterfat on its carbon chain length is accurately described by a skewed, bell-shaped (or Γ-type) distribution. Data taken at five different pH values were fit assuming a Dixon–Webb diprotic model for the pH dependence of the reaction rate. The thermal deactivation of the immobilized lipase obeyed first-order kinetics with a half-life of 19.9 days at 35°C. The multisubstrate model is useful for the prediction of the free fatty acid profile of lipolyzed butterfat, whereas the lumped-substrate model provides an estimate of the overall degree of hydrolysis as a function of the reactor space time. 相似文献
15.
Evgenij Lyagin Anja Drews Subhamoy Bhattacharya Marion B. Ansorge-Schumacher Matthias Kraume 《Biotechnology journal》2010,5(8):813-821
The screening of catalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. For example, catalysts that are inhibited by substrates or accumulating products will be excluded from further investigations in the early stages of process development despite the fact that they might be superior to other candidates in a different operational mode. Important and advantageous properties such as turnover stability can also be overshadowed by product inhibition. The aim of this study was to develop a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose. 相似文献
16.
Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor 总被引:5,自引:0,他引:5
The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity. 相似文献
17.
This numerical study evaluates the momentum and mass transfer in an immobilized enzyme reactor. The simulation is based on the solution of the three-dimensional Navier-Stokes equation and a scalar transport equation with a sink term for the transport and the conversion of substrate to product. The reactor consists of a container filled with 20 spherical enzyme carriers. Each of these carriers is covered with an active enzyme layer where the conversion takes place. To account for the biochemical activity, the sink term in the scalar transport equation is represented by a standard Michaelis-Menten approach. The simulation gives detailed information of the local substrate and product concentrations with respect to external and internal transport limitations. A major focus is set on the influence of the substrate transport velocity on the catalytic process. For reactor performance analysis the overall and the local transport processes are described by a complete set of dimensionless variables. The interaction between substrate concentration, velocity, and efficiency of the process can be studied with the help of these variables. The effect of different substrate inflow concentrations on the process can be seen in relation to velocity variations. The flow field characterization of the system makes it possible to understand fluid mechanical properties and its importance to transport processes. The distribution of fluid motion through the void volume has different properties in different parts of the reactor. This phenomenon has strong effects on the arrangement of significantly different mass transport areas as well as on process effectiveness. With the given data it is also possible to detect zones of high, low, and latent enzymatic activity and to determine whether the conversion is limited due to mass transfer or reaction resistances. 相似文献
18.
Girelli AM Mattei E 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2005,819(1):3-16
This review summarizes all the research efforts in the last decade (1994-2003) that have been spent to the various application of immobilized enzyme reactor (IMER) in on-line high performance liquid chromatography (HPLC). All immobilization procedures including supports, kind of assembly into chromatographic system and methods are described. The effect of immobilization on enzymatic properties and stability of biocatalysts is considered. A brief survey of the main applications of IMER both as pre-column, post-column or column in the chemical, pharmaceutical, clinical and commodities fields is also reported. 相似文献
19.
The ever-increasing diversity of industrial activity is responsible for the discharge of compounds that are toxic or difficult
to degrade into the environment. Some of the compounds found in surface and ground waters, usually deriving from the contamination
of oil-based products, are benzene, toluene, ethylbenzene and xylenes (BTEX). To remove these compounds from contaminated
water, a bench-scale horizontal-flow anaerobic immobilized biomass reactor, containing anaerobic biomass from various sources
immobilized in polyurethane foam matrices, was employed to treat a synthetic substrate composed of protein, carbohydrates
and BTEX solution in ethanol, as well as a BTEX solution in ethanol as the sole carbon source. The reactor removed up to 15.0 mg/l
of each BTEX compound over a hydraulic detention time of 11.4 h. A first-order kinetic model fitted the experimental data
well, showing correlation coefficients higher than 0.994. The apparent first-order coefficient values,
, ranged from 8.4±1.5 day−1 for benzene to 10.7±1.4 day−1 for o-xylene in the presence of ethanol, protein and carbohydrates, and from 10.0±2.0 day−1 for benzene to 13.0±1.7 day−1 for o-xylene in the presence of ethanol. The BTEX degradation rates estimated here were 10- to 94-fold higher than those found
in reports on microcosm studies. 相似文献
20.
Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor 总被引:5,自引:0,他引:5
An enzymatic method for the continuous production of (S)-(+)-2-(6-methoxy-2-naphthyl) propionic acid (Naproxen) has been developed. The process consists of a stereoselective hydrolysis of the racemic Naproxen ethoxyethyl ester catalyzed by Candida cylindracea lipase. The reaction has been carried out in a continuous-flow closed-loop column bioreactor packed with Amberlite XAD-7, a slightly polor resin on which the lipase has been immobilized by adsorption. Various immobilization conditions as well as the properties of the immobilized lipase have been studied. The performance and the productivity of the bioreactor were evaluated as a function of the critical reaction parameters such as temperature, substrate concentration, and product inhibition. By using a 500-mL column bioreactor, 1.8 kg of optically pure (S)-(+)-Naproxen were produced after 1200 h of continuous operation with a slight loss of the enzymatic activity. 相似文献