首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of caffeine-induced endothelial-dependent relaxation of vascular smooth muscle cells has been studied by recording caffeine application-induced electrical responses from intact guinea pig aortic endothelial cells. Depending on the values of the membrane potential, caffeine evoked either hyperpolarizing responses (V m<−45 mV, 88.9% of the cells tested), or depolarizing reactions (V m>−45 mV). The mean amplitude of caffeine-induced hyperpolarization of endothelial cells was 11.2±5.5 mV, which is comparable with the amplitude of ATP-induced hyperpolarization. The amplitude of caffeine-induced depolarization was 8.9±3.4 mV, on average. It was shown that caffeine-induced hyperpolarization of endothelial cells is a result of calcium release from the intracellular stores with subsequent activation of calcium-dependent potassium channels. Intracellular calcium stores involved in caffeine-induced responses are different from those involved in ATP responses. It is concluded that calcium mobilization from the intracellular stores of endothelial cells and, possibly, activation of calcium entry contributes to the caffeine-induced endothelial-dependent relaxation of vascular smooth muscle cells.  相似文献   

2.
Vascular endothelial cells play a fundamental role in the control of vascular tone, and therefore in the control of local blood flow, by releasing various contracting (endothelin, prostaglandins) and relaxing (prostacycline, NO) factors. An additional mechanism involving the hyperpolarization of the vascular smooth muscle cells is observed mainly in the coronary vascular bed and in the periphery. This phenomenon was attributed to an elusive endothelial factor called endothelium-derived hyperpolarizing factor (EDHF). This mechanism is now better understood. It involves first an increase in the endothelial intracellular concentration of calcium, the activation of endothelial potassium channels and the resulting hyperpolarization of the endothelial cells. The hyperpolarization of the endothelial cells is transmitted to the smooth muscle cells by different pathways. This hyperpolarization propagates along the vessels not only via the smooth muscle cells but also via the endothelial cells. Therefore, the endothelial layer can also be considered as a conducting tissue. The discovery of specific inhibitors of the endothelial cell hyperpolarization allows the assessment of the contribution of EDHF-mediated responses in the control of vascular tone.  相似文献   

3.
Because the effects of calcium supplementation on arterial tone in nitric oxide-deficient hypertension are unknown, we investigated the influence of elevating dietary calcium from 1.1 to 3.0% in Wistar rats treated with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg. kg(-1). day(-1)) for 8 wk. A high-calcium diet attenuated the development of hypertension induced by L-NAME and abrogated the associated impairments of endothelium-independent mesenteric arterial relaxations to nitroprusside, isoproterenol, and cromakalim. Endothelium-dependent relaxations to acetylcholine during nitric oxide synthase inhibition in vitro were decreased in L-NAME rats and improved by calcium supplementation. The inhibition of cyclooxygenase by diclofenac augmented the responses to acetylcholine in L-NAME rats but not in calcium + L-NAME rats. When hyperpolarization of smooth muscle was prevented by KCl precontraction, the responses to acetylcholine during combined nitric oxide synthase and cyclooxygenase inhibition were similar in all groups. Furthermore, superoxide dismutase enhanced the acetylcholine-induced relaxations in L-NAME rats but not in calcium + L-NAME rats. In conclusion, calcium supplementation reduced blood pressure during chronic nitric oxide synthase inhibition and abrogated the associated impairments in endothelium-dependent and -independent arterial relaxation. The augmented vasorelaxation after increased calcium intake in L-NAME hypertension may be explained by enhanced hyperpolarization and increased sensitivity to nitric oxide in arterial smooth muscle and decreased vascular production of superoxide and vasoconstrictor prostanoids.  相似文献   

4.
Stretch-elicited intracellular calcium ([Ca(2+)](i)) changes in individual smooth muscle cells in a ring of aorta were measured simultaneously with the force developed by the ring. A phasic increase in [Ca(2+)](i) was observed in 30% of the cells and a sustained one in 10%. Depletion of intracellular calcium store by thapsigargin and caffeine decreased phasic and increased sustained calcium responses. The inhibition of calcium entry either by stretching the aorta in a calcium-free medium or by the inhibition of stretch-activated, non-selective cationic channels by 5 microM GsMtx-4 toxin, decreased the proportion of sustained [Ca(2+)](i) responses but increased transient responses. In this condition, a third of the cells responded to stretch by a bursts of [Ca(2+)](i) spikes. The decrease of calcium influx triggered the generation of burst of calcium spikes after the application of stretch steps to the vascular wall. We conclude that progressive recruitment of smooth muscle cells is the mechanism underlying the force-generating part of the myogenic response. Two types of stretch-elicited calcium responses were observed during the recruitment of the smooth muscle cells. One was a phasic calcium discharge generated by the sarcoplasmic reticulum. The second was a tonic response produced by the activation of the stretch-sensitive cationic channels allowing extracellular Ca(2+) entry.  相似文献   

5.
The cellular mechanisms that couple activity of glutamatergic synapses with changes in blood flow, measured by a variety of techniques including the BOLD signal, have not previously been modelled. Here we provide such a model, that successfully accounts for the main observed changes in blood flow in both visual cortex and somatosensory cortex following their stimulation by high-contrast drifting grating or by single whisker stimulation, respectively. Coupling from glutamatergic synapses to smooth muscle cells of arterioles is effected by astrocytes releasing epoxyeicosatrienoic acids (EETs) onto them, following glutamate stimulation of the astrocyte. Coupling of EETs to the smooth muscle of arterioles is by means of potassium channels in their membranes, leading to hyperpolarization, relaxation and hence an increase in blood flow. This model predicts a linear increase in blood flow with increasing numbers of activated astrocytes, but a non-linear increase with increasing glutamate release.  相似文献   

6.
Jin Z  Guo HS  Xu DY  Hong MY  Li XL  Xu WX 《生理学报》2004,56(6):678-684
为探讨非肾上腺素能非胆碱能神经递质对胃窦环行肌功能的调节作用,在离体胃平滑肌上观察了嘌呤拟似物对胃窦环行肌自发性收缩活动和电活动的影响。电活动用传统的细胞内微电极记录,并和收缩活动同步描记于多道生理记录仪。结果表明,嘌呤能P2Y受体激动剂,三磷酸腺苷(ATP)和2-methylthio ATP(2-MeSATP)均增强胃窦平滑肌的收缩活动,但不影响电活动,而且ATP和2-MeSATP对胃平滑肌收缩活动的增强作用可被嘌呤能P2Y受体阻断剂,reactive blue-2和苏拉明(suramin)所阻断。用100μmol/L α,β-MeATP引起的脱敏感使P2X受体被阻断,ATP增强胃窦平滑肌收缩活动的效应不受影响。嘌呤能P2X受体激动剂,α,β-MeATP明显抑制胃窦环行肌自发性收缩活动,同时使膜电位明显超极化。ATP对胃窦平滑肌的收缩作用不被L型钙通道阻断剂尼卡地平(nicardipine)阻断,但细胞外用无钙液灌流时这种效应则完全被阻断。用前列腺素合成抑制剂消炎痛预先处理20min后,ATP和2-MeSATP仍能增强胃窦平滑肌的自发性收缩活动。以上结果提示:(1)ATP和2-MeSATP通过嘌呤能P2Y受体增强胃窦平滑肌的自发性收缩活动,而α,β-MeATP或β,γ-MeATP通过嘌呤能P2X受体使膜电位超极化,引起胃窦平滑肌的舒张;(2)ATP和2-MeSATP增强胃窦平滑肌自发性收缩活动的效应依赖于细胞外钙,但钙离子进入细胞的途径并不是电压依赖性钙通道;(3)ATP和2-MeSATP增强胃窦平滑肌自发性收缩活动的效应不通过前列腺素介导。  相似文献   

7.
From 22 women undergoing hysterectomy at various stages of the menstrual cycle, strip preparations were dissected from the outer, longitudinal and the inner, circular smooth muscle layers of the ampullary-isthmic junction (AIJ). The strips were mounted in organ baths, and isometric tension was recorded. Spontaneous contractions were recorded mainly in circular muscle strips. Contractions were elicited by 127 mM-K+, 10(-6) M-noradrenaline and 10(-6) M-PGF-2 alpha. Potassium induced biphasic responses that were slightly different in the two tissues. In circular muscle strips, noradrenaline and PGF-2 alpha induced phasic contractions superimposed on a rise in tone. In longitudinal muscle specimens, the two compounds produced tonic responses. All types of mechanical activity were inhibited by removal of extracellular calcium. K+-induced responses and phasic contractions produced by noradrenaline and PGF-2 alpha could be abolished by 10(-6) M-nifedipine whereas the tonic contractions in the circular and longitudinal muscle were more resistant to the calcium antagonist. The results suggest that K+-induced responses in circular and longitudinal muscle of the human AIJ, and the phasic contractions in circular muscle, depend on calcium influx via potential-sensitive membrane channels. Receptor-operated calcium channels seem to be involved in the tonic contractions observed mainly in the longitudinal smooth muscle.  相似文献   

8.
Electrical and mechanical activity of smooth muscle of the guinea-pig caecum was recorded by means of the sucrose-gap technique. The responses of longitudinal and circular smooth muscle to acetycholine were differently affected by changes of extracellular calcium concentration (0.8, 2.5 and 7.5 mM). The contractions of both preparations were depressed at high Ca++ concentrations, whereas at low Ca++ concentrations only contractions of the circular smooth muscle were augmented. The stimulatory effect of acetylcholine was decreased by papaverine in both preparations at all three concentrations of Ca++. This inhibition was the greater the lower the concentration of extracellular Ca++ and this process was more pronounced in the circular muscle. The ability of papaverine to counteract the effect of lowered concentrations of extracellular Ca++ on membrane excitability may well explain its inhibitory effect upon intestinal smooth muscle.  相似文献   

9.
The effect of calcium on the contractile responses induced by high K+ solutions and noradrenaline has been investigated Ca2+-free-solutions and two selective antagonists of calcium channels (verapamil and sodium nitroprusside) have been used. Both types of responses were inhibited by Ca2+-free-solutions. Contractions induced by high K+ solutions were inhibited by verapamil, but not by sodium nitroprusside. However, the responses to noradrenaline were specifically inhibited by sodium nitroprusside. These results suggest that in rumen circular smooth muscle of the sheep there are two types of calcium channels, a voltage-dependent Ca2+ channel and receptor-linked Ca2+ channel.  相似文献   

10.
Endothelial cells are considered electrically unexcitable. However, endothelium-dependent vasodilators (e.g., acetylcholine) often evoke hyperpolarization. We hypothesized that electrical stimulation of endothelial cells could evoke hyperpolarization and vasodilation. Feed artery segments (resting diameter: 63 +/- 1 microm; length 3-4 mm) of the hamster retractor muscle were isolated and pressurized to 75 mmHg, and focal stimulation was performed via microelectrodes positioned across one end of the vessel. Stimulation at 16 Hz (30-50 V, 1-ms pulses, 5 s) evoked constriction (-20 +/- 2 microm) that spread along the entire vessel via perivascular sympathetic nerves, as shown by inhibition with tetrodotoxin, omega-conotoxin, or phentolamine. In contrast, stimulation with direct current (30 V, 5 s) evoked vasodilation (16 +/- 2 microm) and hyperpolarization (11 +/- 1 mV) of endothelial and smooth muscle cells that conducted along the entire vessel. Conducted responses were insensitive to preceding treatments, atropine, or N(omega)-nitro-L-arginine, yet were abolished by endothelial cell damage (with air). Injection of negative current (相似文献   

11.
The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (K(Ca)) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial K(Ca) channels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial K(Ca) channels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.  相似文献   

12.
In response to various neurohumoral substances endothelial cells release nitric oxide (NO), prostacyclin and produce hyperpolarization of the underlying vascular smooth muscle cells, possibly by releasing another factor termed endothelium-derived hyperpolarizing factor (EDHF). EDHF-mediated responses are sensitive to the combination of two toxins, charybdotoxin plus apamin, but do not involve ATP-sensitive or large conductance calcium-activated potassium channels. As hyperpolarization of the endothelial cells is required in order to observe endothelium-dependent hyperpolarization, and electrical coupling through myo-endothelial gap junctions may explain the phenomenon. An alternative explanation is that the hyperpolarization of the endothelial cells causes an efflux of potassium that in turn activates the inwardly rectifying potassium conductance and the Na+/K+ pump of the smooth muscle cells. Endothelial cells produce metabolites of the cytochrome P450-monooxygenase that activate BKCa, and induce hyperpolarization of coronary arterial smooth muscle cells. The elucidation of the mechanism underlying endothelium-dependent hyperpolarization and the discovery of specific inhibitors of the phenomenon are prerequisite for the understanding of the physiological role of this alternative endothelial pathway involved in the control of vascular tone in health and disease.  相似文献   

13.
Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction   总被引:3,自引:0,他引:3  
Ryanodine receptors (RyRs), intracellular calcium release channels essential for skeletal and cardiac muscle contraction, are also expressed in various types of smooth muscle cells. In particular, recent studies have suggested that in airway smooth muscle cells (ASMCs) provoked by spasmogens, stored calcium release by the cardiac isoform of RyR (RyR2) contributes to the calcium response that leads to airway constriction (bronchoconstriction). Here we report that mouse ASMCs also express the skeletal muscle and brain isoforms of RyRs (RyR1 and RyR3, respectively). In these cells, RyR1 is localized to the periphery near the cell membrane, whereas RyR3 is more centrally localized. Moreover, RyR1 and/or RyR3 in mouse airway smooth muscle also appear to mediate bronchoconstriction caused by the muscarinic receptor agonist carbachol. Inhibiting all RyR isoforms with > or = 200 microM ryanodine attenuated the graded carbachol-induced contractile responses of mouse bronchial rings and calcium responses of ASMCs throughout the range of carbachol used (50 nM to > or = 3 microM). In contrast, inhibiting only RyR1 and RyR3 with 25 microM dantrolene attenuated these responses caused by high (>500 nM) but not by low concentrations of carbachol. These data suggest that, as the stimulation of muscarinic receptor in the airway smooth muscle increases, RyR1 and/or RyR3 also mediate the calcium response and thus bronchoconstriction. Our findings provide new insights into the complex calcium signaling in ASMCs and suggest that RyRs are potential therapeutic targets in bronchospastic disorders such as asthma.  相似文献   

14.
We have recently shown the presence of receptors for 1,25-dihydroxyvitamin D3 and that 1,25-dihydroxyvitamin D3 stimulates Ca-ATPase in vascular smooth muscle cells presumably via receptor mediated mechanism. These data suggest that the sterol may directly be involved in the regulation of cellular calcium homeostasis. To further define action of vitamin D in smooth muscle cells, we studied effect of the sterol on cellular uptake of calcium. 1,25-dihydroxyvitamin D3 stimulated 45Ca2+ uptake by cultured cells, A7r5, derived from fetal rat aorta, when the cells were incubated with the sterol for 18 hr. The effect was dose-dependent at 10(-10) to 10(-9) M, and three orders of magnitude higher concentration of 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3 was needed to obtain similar effects. Furthermore, the effect of 1,25-dihydroxyvitamin D3 was abolished by cycloheximide (10(-5) M), a protein synthesis inhibitor. These data clearly suggest that 1,25-dihydroxyvitamin D3 may directly regulate cellular calcium homeostasis in vascular smooth muscle cells presumably via receptor mediated mechanism.  相似文献   

15.
Aulí M  Fernández E 《Life sciences》2007,81(14):1117-1129
Colitis induced by Trichinella spiralis in rat induces alterations in the spontaneous motor pattern displayed by circular colonic muscle [Auli, M., Fernandez, E., 2005. Characterization of functional and morphological changes in a rat model of colitis induced by T. spiralis. Digestive Diseases and Sciences 50(8), 1432-1443]. We examined the temporal relationship between the severity of inflammation and the altered contractility of the underlying circular muscle as well as the role of NANC inhibitory pathways in the disruption of the motility pattern. Colitis was induced by intrarectal administration of T. spiralis larvae. Responses to acetylcholine (ACh) and increased extracellular potassium as well as the effect of tetrodotoxin (TTX, 1 microM), N-nitro-l-arginine (L-NOARG, 1 mM) and apamin (1 microM) were determined in vitro in the organ bath with circular muscle strips from sham-infected and infected rats at days 2-30 postinfection (PI). Microelectrode recordings were performed to study the putative changes in electrical activity of colonic smooth muscle cells. Responses to ACh and KCl were decreased at all days PI compared to sham. Intracellular calcium depletion had a greater inhibitory effect in inflamed tissue (6-14 PI). The effect of TTX, L-NOARG and apamin on the spontaneous contractions was found to be altered in all infected rats, i.e. their effects were transient and milder. Inflamed tissue showed lower resting membrane potential and a decreased duration of inhibitory junction potentials induced by electrical stimulation. These data suggest that the decreased contractility of colonic circular smooth muscle induced by the intrarectal T. spiralis infection results from the impairment of the excitation-contraction coupling, from a persistent hyperpolarization of smooth muscle cells and from impaired NANC inhibitory neurotransmission.  相似文献   

16.
Histamine is an inflammatory mediator present in mast cells, which are abundant in the wall of the gallbladder. We examined the electrical properties of gallbladder smooth muscle and nerve associated with histamine-induced changes in gallbladder tone. Recordings were made from gallbladder smooth muscle and neurons, and responses to histamine and receptor subtype-specific compounds were tested. Histamine application to intact smooth muscle produced a concentration-dependent membrane depolarization and increased excitability. In the presence of the H(2) antagonist ranitidine, the response to histamine was potentiated. Activation of H(2) receptors caused membrane hyperpolarization and elimination of spontaneous action potentials. The H(2) response was attenuated by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide in intact and isolated smooth muscle. Histamine had no effect on the resting membrane potential or excitability of gallbladder neurons. Furthermore, neither histamine nor the H(3) agonist R-alpha-methylhistamine altered the amplitude of the fast excitatory postsynaptic potential in gallbladder ganglia. The mast cell degranulator compound 48/80 caused a smooth muscle depolarization that was inhibited by the H(1) antagonist mepyramine, indicating that histamine released from mast cells can activate gallbladder smooth muscle. In conclusion, histamine released from mast cells can act on gallbladder smooth muscle, but not in ganglia. The depolarization and associated contraction of gallbladder smooth muscle represent the net effect of activation of both H(1) (excitatory) and H(2) (inhibitory) receptors, with the H(2) receptor-mediated response involving the activation of K(ATP) channels.  相似文献   

17.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

18.
Using a novel vessel culture technique in combination with antisense oligonucleotide transfection, we tested whether the endothelium-derived hyperpolarizing factor (EDHF) is a cytochrome P450 (CYP)-related compound. Isolated resistance arteries from hamster gracilis muscle (n=19) were perfused and exposed to antisense (As), sense (S), or scrambled (Scr) oligonucleotides against the coding region of CYP2C8/9, an isoform expressed in endothelial cells. Thereafter, NO- and prostaglandin-independent, EDHF-mediated vascular responses associated with hyperpolarization [i.e., decrease in smooth muscle calcium (Fura 2) and vasodilation] were studied after the application of acetylcholine (ACh). These EDHF-mediated responses were markedly attenuated (by 70%) by As- but not by S- or Scr-oligonucleotide treatment. However, the responses to norepinephrine (0.3 micromol/l), the NO donor sodium nitroprusside (1 micromol/l), and the K(Ca) channel activator NS1619 (100 micromol/l) were unaltered. As treatment, which specifically targeted the endothelial layer (as assessed by confocal microscopy), had no inhibitory effect on increases in endothelial calcium to ACh. It is concluded that a CYP2C8/9-related isoform functions as an EDHF synthase in hamster resistance arteries and that a product of this enzyme is an EDHF, or at least an integral part of the signaling cascade leading to EDHF-mediated responses.-Bolz, S.-S., Fisslthaler, B., Pieperhoff, S., de Wit, C., Fleming, I., Busse, R., Pohl, U. Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHF-mediated Ca(2+) changes and dilation in isolated resistance arteries.  相似文献   

19.
Agonists such as those acting at muscarinic receptors are thought to induce contraction of smooth muscle primarily through inositol 1,4,5-trisphosphate production and release of Ca2+ from sarcoplasmic reticulum. However, the additional Ca2+-mobilizing messengers cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) may also be involved in this process, the former acting on the sarcoplasmic reticulum, the latter acting on lysosome-related organelles. In this study, we provide the first systematic analysis of the capacity of inositol 1,4,5-trisphosphate, cADPR, and NAADP to cause contraction in smooth muscle. Using permeabilized guinea pig detrusor and taenia caecum, we show that all three Ca2+-mobilizing messengers cause contractions in both types of smooth muscle. We demonstrate that cADPR and NAADP play differential roles in mediating contraction in response to muscarinic receptor activation, with a sizeable role for NAADP and acidic calcium stores in detrusor muscle but not in taenia caecum, underscoring the heterogeneity of smooth muscle signal transduction systems. Two-pore channel proteins (TPCs) have recently been shown to be key components of the NAADP receptor. We show that contractile responses to NAADP were completely abolished, and agonist-evoked contractions were reduced and now became independent of acidic calcium stores in Tpcn2−/− mouse detrusor smooth muscle. Our findings provide the first evidence that TPC proteins mediate a key NAADP-regulated tissue response brought about by agonist activation of a cell surface receptor.  相似文献   

20.
We investigated the cellular distribution of the calcium-activated chloride channel (CaCC), anoctamin 1, in the urethra of mice, rats, and sheep by both immunofluorescence and PCR. We studied its role in urethral contractility by examining the effects of chloride-free medium and of several CaCC inhibitors on noradrenergic and cholinergic excitatory responses, and on nitrergic relaxations in urethral preparations. In all species analyzed, CaCC played a key role in urethral contractions, influencing smooth muscle cells activated by increases in intracellular calcium, probably due to calcium influx but with a minor contribution by IP(3)-mediated calcium release. The participation of CaCC in relaxant responses was negligible. Strong anoctamin 1 immunoreactivity was detected in the smooth muscle cells and urothelia of sheep, rat, and mouse urethra, but not in the interstitial cells of Cajal (ICC) in any of these species. RT-PCR confirmed the expression of anoctamin 1 mRNA in the rat urethra. This anoctamin 1 in urethral smooth muscle probably mediates the activity of chloride in contractile responses in different species, However, the lack of anoctamin 1 in ICCs challenges its proposed role in regulating urethral contractility in a manner similar to that observed in the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号