首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to find new antibiotics, a novel series of 14-membered macrolides with imidazo[4,5-b]pyridinyl sulfur contained alkyl side chains has been synthesized based on commercially available clarithromycin. Chemical transformation of hydroxy group at position C-3 afforded range of ketolides and acylides. Compared to telithromycin, compound 15a demonstrated improved in vitro activity against erythromycin-susceptible and -resistant strains.  相似文献   

2.
Emergence of bacterial resistance to macrolide antibiotics, particularly in Gram-positive bacteria, has been observed. Novel macrolides having C-4" carbamate functional groups and ketolides, the 3-keto derivatives of macrolides, have been found to have activities against macrolide-resistant strains. Several potential non-antibacterial activities of macrolides have been reported, such as inhibition of cytokine production, neutrophil attachment to human bronchial epithelial cells and vesicular transport.  相似文献   

3.
A series of novel 6-O-substituted and 6,12-di-O-substituted 8a-aza-8a-homoerythromycin A and 9a-aza-9a-homoerythromycin A ketolides were synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and erythromycin-resistant test strains. Another series of ketolides based on 14-membered erythromycin oxime scaffold was also synthesized and their antibacterial activity compared to those of 15-membered azahomoerythromycin analogues. In general, structure-activity studies have shown that 14-membered ketolides displayed favorable antibacterial activity in comparison to their corresponding 15-membered analogues within 9a-azahomoerythromycin series. However, within 8a-azahomoerythromycin series, some compounds incorporating a ketolide combined with either quinoline or quinolone pharmacophore substructures showed significantly potent activity against a variety of erythromycin-susceptible and macrolide-lincosamide-streptogramin B (MLS(B))-resistant Gram-positive pathogens as well as fastidious Gram-negative pathogens. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens and display hitherto unprecedented in vitro activity against the constitutively MLS(B)-resistant strain of Staphylococcus aureus. In addition, they also represent an improvement over telithromycin (2) and cethromycin (3) against fastidious Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis.  相似文献   

4.
The effect of 2,3 modifications on the antibacterial activity of ketolides was evaluated by introducing substituents in position 2 and converting the C-1, C-2, C-3 beta-keto-ester into stable 2,3 enol-ether or 2,3 anhydro derivatives. Introduction of a fluorine in C-2 is beneficial with regard to the overall antibacterial spectrum whereas the enol-ether and 2,3 unsaturated compounds, as well as the bulky gem dimethyl or 2-chloro derivatives, are less active particularly against erythromycin resistant strains. A 2-fluoro ketolide derivative demonstrates good antibacterial activity and in vivo efficacy against multi-resistant Streptococcus pneumoniae. Compared to azithromycin against Haemophilus influenzae, this compound is equivalent in vitro and slightly more active in vivo. These results demonstrate that within the ketolide class, to retain good antibacterial activity, position 2 needs to remain tetrahedral and tolerates only very small substituents such as fluorine.  相似文献   

5.
A new type of ketolides, bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and a cyclic carbonate at the C-11,12 position was prepared and the antibacterial activities of the compounds were evaluated. Some of the derivatives showed potent antibacterial activity against both Haemophilus influenzae and Streptococcus pneumoniae, which are clinically important respiratory tract pathogens. Among the derivatives prepared, compound 5s with a quinolin-4-yl moiety was found to have potent and well-balanced activity against S. pneumoniae and H. influenzae including erythromycin-resistant strains.  相似文献   

6.
A novel series of C(12) ethyl erythromycin derivatives have been discovered which exhibit in vitro and in vivo potency against key respiratory pathogens, including those resistant to erythromycin. The C(12) modification involves replacing the natural C(12) methyl group in the erythromycin core with an ethyl group via chemical synthesis. From the C(12) ethyl macrolide core, a series of C(12) ethyl ketolides were prepared and tested for antibacterial activity against a panel of relevant clinical isolates. Several compounds were found to be potent against macrolide-sensitive and -resistant bacteria, whether resistance was due to ribosome methylation (erm) or efflux (mef). In particular, the C(12) ethyl ketolides 4k,4s,4q,4m, and 4t showed a similar antimicrobial spectrum and comparable activity to the commercial ketolide telithromycin. The in vivo efficacy of several C(12) ethyl ketolides was demonstrated in a mouse infection model with Streptococcus pneumoniae as pathogen.  相似文献   

7.
A series of quinoylalkyl side chains was designed and synthesized, followed by introduction into ketolides by coupling with building block 6 or 32. The corresponding targets 7a–n, 33b, and 33e were tested for their in vitro activities against a series of macrolide-sensitive and macrolide-resistant pathogens. Some of them showed a similar antibacterial spectrum and comparable activity to telithromycin. Among them, two C2-F ketolides, compounds 33b and 33e, displayed excellent activities against macrolide-sensitive and macrolide-resistant pathogens.  相似文献   

8.
A new series of erythromycin A derivatives, the 6-O-heteroarylcarbamoyl-11,12-lactoketolides, with activity against macrolide-resistant streptococci, are described. Structurally, these macrolide antibiotics are characterized by a heteroaryl side chain attached to the macrolactone core through a carbamate linkage at the C6 position, as well as 11,12-gamma-lactone and 3-keto functionalities. The synthesis and antibacterial activity of this new series of ketolides are discussed.  相似文献   

9.
An efficient method for the synthesis of diverse 9a-carbamoyl- and 9a-thiocarbamoyl-3-decladinosyl-6-hydroxy and 3-decladinosyl-6-methoxy derivatives of 15-membered azalides has been developed. These derivatives bear various alkyl and aryl groups attached to macrolide scaffold through urea or thiourea moieties at 9a position. Chemical transformations of hydroxy group at position C-3 afforded range of ketolides, anhydrolides, hemiketals, cyclic ethers, and acylides. It has been shown that 6-hydroxy and 6-methoxy derivatives undergo different chemical transformations under otherwise identical reaction conditions. Antimicrobial properties of prepared compounds were evaluated.  相似文献   

10.
Synthesis and antibacterial activity of C6-carbazate ketolides   总被引:1,自引:0,他引:1  
A novel series of ketolides containing heteroaryl groups that are linked to the erythronolide ring via a C6-carbazate functionality has been successfully synthesized. Careful modulation of the heteroaryl groups, the length and degree of saturation of the C6-carbazate linker, and the substituents present on each of the carbazate nitrogens led to compounds with potent activity against key bacterial respiratory pathogens. The best analogs of this series had in vitro and in vivo (sc dosing) profiles that were comparable to telithromycin.  相似文献   

11.
Juvenile hormone (JH) undergoes metabolic degradation by two major pathways involving JH esterase and JH epoxide hydrolase (EH). While considerable effort has been focussed on the study of JH esterase and the development of inhibitors for this enzyme, much less has been reported on the study of JH-EH. In this work, the asymmetric synthesis of two classes of inhibitors of recombinant JH-EH from Trichoplusia ni, a glycidol-ester series and an epoxy-ester series is reported. The most effective glycidol-ester inhibitor, compound 1, exhibited an I(50) of 1.2x10(-8) M, and the most effective epoxy-ester inhibitor, compound 11, exhibited an I(50) of 9.4x10(-8) M. The potency of the inhibitors was found to be dependent on the absolute configuration of the epoxide. In both series of inhibitors, the C-10 R-configuration was found to be significantly more potent that the corresponding C-10 S-configuration. A mechanism for epoxide hydration catalyzed by insect EH is also presented.  相似文献   

12.
A series of new triazole-containing ketolides and 2-fluoro-ketolides in which the 5-O-desosamine was replaced by unnatural sugars were synthesized and evaluated against relevant macrolide-sensitive and macrolide-resistant respiratory pathogens. Excellent in vitro antibacterial activities were demonstrated for ketolide analogues having the 6'-OBz-3'-dimethylamino-glucose and 6'-OBz-4'-deoxy-3'-dimethylamino-glucose substituents.  相似文献   

13.
A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and its analogues were prepared, and their antibacterial activities and pharmacokinetic properties were evaluated. We found that the introduction of an (R)-alkyl group between the amide and iminoether groups could improve the pharmacokinetic properties while maintaining the activity against erythromycin-resistant Streptococcus pneumoniae. Among the ketolides prepared with the (R)-alkyl group, compound 5p with an N-(3-quinoxalin-6-yl-propyl)-propionamide moiety was found to have in vivo efficacy comparable to CAM with potent in vitro antibacterial activities against the key respiratory pathogens including Haemophilus influenzae and erythromycin-resistant S. pneumoniae.  相似文献   

14.
Synthesis and antibacterial activity of 5-substituted oxazolidinones   总被引:2,自引:0,他引:2  
A series of 5-substituted oxazolidinones with varying substitution at the 5-position of the oxazolidinone ring were synthesized and their in vitro antibacterial activity was evaluated. The compounds demonstrated potent to weak antibacterial activity. A novel compound (PH-027) demonstrated potent antibacterial activity, which is comparable to or better than those of linezolid and vancomycin against antibiotic-susceptible standard and clinically isolated resistant strains of gram-positive bacteria. Although the presence of the C-5-acetamidomethyl functionality at the C-5 position of the oxazolidinones has been widely claimed and reported as a structural requirement for optimal antimicrobial activity in the oxazolidinone class of compounds, our results from this work identified the C-5 triazole substitution as a new structural alternative for potent antibacterial activity in the oxazolidinone class.  相似文献   

15.
A series of 9-oxime-11,12-carbamate ketolides was synthesized for the first time through a key 11,12-hydrazonocarbamate intermediate that was first oximated and further deaminated to give the corresponding carbamate. The N-N bond cleavage was achieved through an original new reaction using glycoaldehyde dimer as deaminating reagent. The new compounds synthesized were shown to display improved antibacterial activities against Streptococcus pneumoniae and S. pyogenes resistant to erythromycin.  相似文献   

16.
Chemical substitutions at pharmacologically relevant sites such as C-5, C-13, C-22,23, and C-25 were examined in ivermectin, doramectin, selamectin, and a series of 11 other intermediates using a larval development assay with Haemonchus contortus. A range of activities spanning 5 orders of magnitude were manifest with small changes in the substituents to the 14 avermectins. Within this compound series, there was no major potency advantage or disadvantage to a disaccharide over a monosaccharide substituent at C-13. Ivermectin and doramectin were each fully effective at a concentration of 0.001 microg/ml, and both were similar to their respective monosaccharide homologs. Specific patterns emerged among the analogs with substituents at C-5. Analogs possessing hydroxyl groups at C-5 were superior in activity by several orders of magnitude over those with oxo substituents. Replacement of the oxo with an oxime (NOH) restored activity to some degree but did not restore it to the level of those possessing the hydroxyl substituent. Consequently, ivermectin and doramectin that possess hydroxyl moieties at C-5 were superior against H. contortus to those like selamectin that have oxime substituents. There was no advantage for analogs with a single or double bond at C-22,23 within the cyclohexyl series, and these analogs had equivalent activity as those with a single bond at C-22,23 in the sec-butyl/isopropyl series. However, there was superior activity for the analog series that possessed the combination of a double-bond at C-22,23 and a sec-butyl/isopropyl substituent at C-25. As a result, the most potent compound in this test was not any of the 3 commercialized avermectins but was a monosaccharide with a double bond at C-22,23, an hydroxyl at C-5, and a sec-butyl/isopropyl moiety at C-25.  相似文献   

17.
Ketolides, characterized by possessing a 3-keto group in place of the l-cladinose moiety of erythromycin A, are the recent generation of antimicrobials derived semi-synthetically from the 14-membered ring macrolide erythromycin A. The multi-step synthetic route to ketolides can be shortened by using 5-O-desosaminyl erythronolide A as a precursor, which reduces the steps for the removal of l-cladinose attached at the C-3 position in erythromycin A. Deletion of an eryBV gene encoding mycarosyl glycosyltransferase in the erythromycin-producer Saccharopolyspora erythraea resulted in the accumulation of 5-O-desosaminyl erythronolide B. In vivo expression of the cytochrome P450 gene pikC, which encodes the substrate-flexible hydroxylase from the pikromycin biosynthetic pathway of Streptomyces venezuelae, in the eryBV deletion mutant strain of Sac. erythraea led to 5-O-desosaminyl erythronolide A production.  相似文献   

18.
Methodologies for the synthesis of C10-C-unsaturated clarithromycin congeners have been developed from corresponding C10-methyl erythromycin A ketolides. Activation of the unreactive C10-methyl group and subsequent Pd-catalyzed cross-coupling reactions afford novel C-10-unsaturated clarithromycins for antibacterial screening programs. By related methodology azides can be prepared and used for the preparation of corresponding 1,2,3-triazoles by click chemistry. The work demonstrates the importance of transition metal catalysis in natural product semi-synthesis and potential SAR studies. The in vitro MIC values from screening the products against strains of respiratory pathogens of S. pneumoniae and S. aureus indicate that the new antibacterials are close to equipotent with the clarithromycin reference compound.  相似文献   

19.
Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.  相似文献   

20.
Novel C6-carbamate ketolides with C2-fluorination and C9-oximation have been synthesized. The best compounds in this series displayed MIC values of 0.03-0.12 microg/mL against streptococci containing erm and mef resistance determinants and 2-4 microg/mL against Haemophilus influenzae. Several compounds also showed measurable activity against erm(B)-containing enterococci with MIC values of 2-8 microg/mL. In vivo activity was adversely affected by fluorination, possibly as a result of increased serum protein binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号