首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Conwell CC  Hud NV 《Biochemistry》2004,43(18):5380-5387
Millimolar concentrations of divalent cations are shown to affect the size of toroids formed when DNA is condensed by multivalent cations. The origins of this effect were explored by varying the order in which MgCl(2) was added to a series of DNA condensation reactions with hexammine cobalt chloride. The interplay between Mg(II), temperature, and absolute cation concentration on DNA condensation was also investigated. These studies reveal that DNA condensation is extremely sensitive to whether Mg(II) is associated with DNA prior to condensation or Mg(II) is added concurrently with hexammine cobalt(III) at the time of condensation. It was also found that, in the presence of Mg(II), temperature and dilution can have opposite effects on the degree of DNA condensation. A systematic comparison of DNA condensates observed in this study clearly illustrates that, under our low-salt conditions, toroid size is determined by the kinetics of toroid nucleation and growth. However, when Mg(II) is present during condensation, toroid size can also be limited by a thermodynamic parameter (e.g., undercharging). The path dependence of DNA condensation presented here illustrates that regardless of which particular factors limit toroid growth, toroids formed under the various conditions of this study are largely nonequilibrium structures.  相似文献   

2.
Controlling the size and shape of DNA condensates is important in vivo and for the improvement of nonviral gene delivery. Here, we demonstrate that the morphology of DNA condensates, formed under a variety of conditions, is shifted completely from toroids to rods if the bacterial protein HU is present during condensation. HU is a non-sequence-specific DNA binding protein that sharply bends DNA, but alone does not condense DNA into densely packed particles. Less than one HU dimer per 225 bp of DNA is sufficient to completely control condensate morphology when DNA is condensed by spermidine. We propose that rods are favored in the presence of HU because rods contain sharply bent DNA, whereas toroids contain only smoothly bent DNA. The results presented illustrate the utility of naturally derived proteins for controlling the shape of DNA condensates formed in vitro. HU is a highly conserved protein in bacteria that is implicated in the compaction and shaping of nucleoid structure. However, the exact role of HU in chromosome compaction is not well understood. Our demonstration that HU governs DNA condensation in vitro also suggests a mechanism by which HU could act as an architectural protein for bacterial chromosome compaction and organization in vivo.  相似文献   

3.
In vitro condensation of DNA by multivalent cations can provide useful insights into the physical factors governing folding and packaging of DNA in vivo. We have made a detailed study of hexammine cobalt (III) induced condensation of 2700 and 1350 base pair (bp) fragments of plasmid pUC12 DNA by electron microscopy and laser light scattering. The condensed DNA takes the form of toroids and rods. Both are present in all condensates, but the proportion of toroids is higher with the larger fragments. The intact, closed circular plasmid produces smaller particles than the linear fragments. The size of a particle is independent of DNA fragment length. Two hours after adding the condensing agent, a typical toroid is about 800 A in diameter; the outer radius (R1) is approximately 400 A, and the inner radius (R2) is approximately 140 A for both sets of fragments. These dimensions are relatively stable, but there is sufficient change in both R1 and R2 to produce approximately 50% increase in volume from 2 to 24 h. A typical rod at 2 h is about 1800 A long and 300 A wide. The distribution of rod lengths is similar to that of mean toroid circumferences pi (R1 + R2), and the distribution of rod widths is similar to that of toroidal widths (R1-R2). The 2700-bp fragments show a significantly higher ratio of toroids to rods than the 1350-bp fragments. Both types of particle are multimolecular. The average number of molecules/particle, calculated from the above dimensions, assuming hexagonally packed B-form DNA with a center-to-center spacing of 27 A, is 13 +/- 4 for condensates of 2700-bp fragments and 26 +/- 11 for those of 1350-bp fragments. Monomolecular condensates of much larger DNAs have similar dimensions, suggesting that size is governed primarily by the balance of attractive and repulsive intermolecular forces rather than by the entropic factors associated with incorporation of a number of small particles into a larger one. The similar dimensions and volumes of toroids and rods indicate that the free energy cost of continual bending in toroids, minus that gained by extra net attraction in a cyclic particle, is comparable to that of abrupt bending or kinking in rods. Although the condensed particles are multimeric, their distinct toroidal or rodlike shapes distinguish them from the random aggregates that would be generally expected from the multimolecular association of large, flexible polymers.  相似文献   

4.
Condensation of DNA by trivalent cations. 2. Effects of cation structure   总被引:1,自引:0,他引:1  
Electron microscopy is employed to examine DNA aggregates produced by three tripositively charged condensing agents. Spermidine, hexammine cobalt (III), and me8spermidine (in which the amine groups of spermidine are exhaustively methylated) all produce condensates. The predominant form of condensate observed is toroidal; however, me8spermidine produces a large fraction of rodlike condensates. Distributions of toroidal radii and estimated volumes suggest that the size of condensates depends on the condensing agent employed, its concentration, and the time elapsed after addition of condensing agent. While ligand charge seems to be the major factor in predicting condensing power, ligand structure influences the morphology and dimensions of the particles produced. The ability to form hydrogen bonds is not required to promote condensation, since me8spermidine has no NHs. There may be a kinetic barrier to condensation at low me8spermidine concentrations. The relative proportions of toroids and rods may depend on the energetic compensation between bending and binding in cyclic structures, or on rate-limiting formation of sharply bent or kinked regions in rods.  相似文献   

5.
DNA toroids: stages in condensation.   总被引:8,自引:0,他引:8  
R Golan  L I Pietrasanta  W Hsieh  H G Hansma 《Biochemistry》1999,38(42):14069-14076
The effects of polylysine (PLL) and PLL-asialoorosomucoid (AsOR) on DNA condensation have been analyzed by AFM. Different types of condensed DNA structures were observed, which show a sequence of conformational changes as circular plasmid DNA molecules condense progressively. The structures range from circular molecules with the length of the plasmid DNA to small toroids and short rods with approximately 1/6 to 1/8 the contour length of the uncondensed circular DNA. Single plasmid molecules of 6800 base pairs (bp) condense into single toroids of approximately 110 nm diameter, measured center-to-center. The results are consistent with a model for DNA condensation in which circular DNA molecules fold several times into progressively shorter rods. Structures intermediate between toroids and rods suggest that at least some toroids may form by the opening up of rods as proposed by Dunlap et al. [(1997) Nucleic Acids Res. 25, 3095]. Toroids and rods formed at lysine:nucleotide ratios of 5:1 and 6:1. This high lysine:nucleotide ratio is discussed in relation to entropic considerations and the overcharging of macroions. PLL-AsOR is much more effective than PLL alone for condensing DNA, because several PLL molecules are attached to a single AsOR molecule, resulting in an increased cation density.  相似文献   

6.
The condensation of free DNA into toroidal structures in the presence of multivalent ions and polypeptides is well known. Recent single molecule experiments have shown that condensation into toroids occurs even when the DNA molecule is subjected to tensile forces. Here we show that the combined tension and torsion of DNA in the presence of condensing agents dramatically modifies this picture by introducing supercoiled DNA as a competing structure in addition to toroids. We combine a fluctuating elastic rod model of DNA with phenomenological models for DNA interaction in the presence of condensing agents to compute the minimum energy configuration for given tension and end-rotations. We show that for each tension there is a critical number of end-rotations above which the supercoiled solution is preferred and below which toroids are the preferred state. Our results closely match recent extension rotation experiments on DNA in the presence of spermine and other condensing agents. Motivated by this, we construct a phase diagram for the preferred DNA states as a function of tension and applied end-rotations and identify a region where new experiments or simulations are needed to determine the preferred state.  相似文献   

7.
本文利用透射式电镜对四种短DNA片段(500、1100、1500、2700 bP)的缩合结构进行了比较研究得出很有意义的结果。定量研究证实短至500 bP的DNA分子仍可形成复曲面,且分子量相差5倍多的DNA片段缩合形成的复曲面尺度大小一致。复曲面外径为400A左右。从而进一步证实作者与Arscott及Bloomfield关于复曲面尺度独立于DNA分子量,及短DNA片段的缩合是多分子缩合的结论。此外,观测到缩合中间结构的尺度依DNA分子量大小不同而变化,同时分子量愈小的DNA片段产生另一种缩合结构—棒体的几率愈大。  相似文献   

8.
The packaging pathway of cobalt hexammine-induced DNA condensation on the surface of mica was examined by varying the concentration of Co(NH3)6(3+) in a dilute DNA solution and visualizing the condensates by atomic force microscopy (AFM). Images reveal that cobalt hexammine-induced DNA condensation on mica involves well-defined structures. At 30 microM Co(NH3)6(3+), prolate ellipsoid condensates composed of relatively shorter rods with linkages between them are formed. At 80 microM Co(NH3)6(3+), the condensed features include toroids with average diameter of approximately 240 nm as well as U-shaped and rod-like condensates with nodular appearances. The results imply that the condensates, whether toroids, U-shaped or rod-like structures have similar intermediate state which includes relatively shorter rod-like segments. The average size of the condensed toroids after incubated at room temperature for 5 h (approximately 240 nm) is much larger than that incubated for 0.5 h (approximately 100 nm). The results indicate that the condensation of DNA by Co(NH3)6(3+) is a kinetic-controlled process.  相似文献   

9.
In living organisms, DNA is generally confined into very small volumes. In most viruses, positively charged multivalent ions assist the condensation of DNA into tightly packed toroidal structures. Interestingly, such cations can also induce the spontaneous formation of DNA toroids in vitro. To resolve the condensation dynamics and stability of DNA toroids, we use a combination of optical tweezers and fluorescence imaging to visualize in real-time spermine-induced (de)condensation in single DNA molecules. By actively controlling the DNA extension, we are able to follow (de)condensation under tension with high temporal and spatial resolution. We show that both processes occur in a quantized manner, caused by individual DNA loops added onto or removed from a toroidal condensate that is much smaller than previously observed in similar experiments. Finally, we present an analytical model that qualitatively captures the experimentally observed features, including an apparent force plateau.  相似文献   

10.
Cationic silanes stabilize intermediates in DNA condensation.   总被引:5,自引:0,他引:5  
Y Fang  J H Hoh 《FEBS letters》1999,459(2):173-176
In vitro condensation of DNA has been widely studied to gain insight into the mechanisms of DNA compaction in biological systems such as chromosomes and phage heads and has been used to produce nanostructured particles with novel material and functional properties. Here we report on the condensation of DNA in aqueous solutions by cationic silanes, which combine the condensing properties of polyamines with the cross-linking chemistry of silanes. DNA can be reversibly condensed into classical toroidal and rod-shaped structures with these agents. At low silane concentrations DNA forms a variety of looped structures with well-defined characteristics, including flower- and sausage-shaped forms. These structures suggest that at low silane concentrations a DNA-DNA contact in which the strands are at very large angles to each other is stabilized. Changes in these structures observed as a function of silane concentration suggest possible pathways for the formation of toroids and rods.  相似文献   

11.
DNA toroids that form inside the bacteriophage capsid present different shapes according to whether they are formed by the addition of spermine or polyethylene glycol to the bathing solution. Spermine-DNA toroids present a convex, faceted section with no or minor distortions of the DNA interstrand spacing with respect to those observed in the bulk, whereas polyethylene glycol-induced toroids are flattened to the capsid inner surface and show a crescent-like, nonconvex shape. By modeling the energetics of the DNA toroid using a free-energy functional composed of energy contributions related to the elasticity of the wound DNA, exposed surface DNA energy, and adhesion between the DNA and the capsid, we established that the crescent shape of the toroidal DNA section comes from attractive interactions between DNA and the capsid. Such attractive interactions seem to be specific to the PEG condensation process and are not observed in the case of spermine-induced DNA condensation.  相似文献   

12.
Multivalent cations are known to condense DNA into higher ordered structures, including toroids and rods. Here we report that solid supports treated with monovalent or multivalent cationic silanes, followed by removal of soluble molecules, can condense DNA. The mechanism of this surface-directed condensation depends on surface-mobile silanes, which are apparently recruited to the condensation site. The yield and species of DNA aggregates can be controlled by selecting the type of functional groups on surfaces, DNA and salt concentrations. For plasmid DNA, the toroidal form can represent >70% of adsorbed structures.  相似文献   

13.
The atomic force microscope (AFM) was used to assay the extent of DNA condensation in approximately 100 different complexes of DNA with polylysine (PL) or PL covalently attached to the glycoproteins asialoorosomucoid (AsOR) or orosomucoid (OR). The best condensation of DNA was obtained with 10 kDa PL covalently attached to AsOR, at a lysine:nucleotide (Lys:nt) ratio of 5:1 or higher. These conditions produce large numbers of toroids and short rods with contour lengths of 300-400 nm. Some DNA condensation into shortened thickened structures was seen with 10 kDa PL attached to AsOR at Lys:nt ratios of 1.6:1 and 3:1. Some DNA condensation was also seen with 4 kDa PL at Lys:nt ratios of 3:1 and higher. Little DNA condensation was seen with PL alone or with PL convalently attached to OR at Lys:nt ratios up to 6:1. AsOR-PL enhanced gene expression in the mouse liver approximately 10- to 50-fold as compared with PL alone.  相似文献   

14.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   

15.
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30–60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.  相似文献   

16.
在多分子缩合的实验研究基础上,本文以Tanford的递次结合模型为基础,建立了DNA多分子缩合的理论模型.此模型描述了缩合粒子的多分子结合特性,并预测缩合粒子的聚合数分布.模型的理论分布与作者用电镜获得的统计实验分布符合一致.同时,由于一组参量可同时拟合两种不同DNA长度的复曲面分布曲线,因而从理论上阐明缩合粒子的尺度独立于DNA的分子量.此外,还以高斯分布对复曲面的聚合数分布进行了模拟与比较.  相似文献   

17.
Sequence-dependent configuration changes and condensation of double-stranded poly(dG-dC).(dG-dC) (GC-DNA) and ds poly(dA-dT).(dA-dT) (AT-DNA) were observed by atomic force microscopy in the presence of Ni(II). Less condensing agent was required to generate configuration changes in GC-DNA as compared to AT-DNA. In the presence of Ni(II) cations, GC-DNA adopted a Z-type conformation and underwent a stepwise condensation, starting with partial intramolecular folding, followed by intermolecular condensation of two to several molecules and ending with the formation of toroids, rods, and jumbles. GC-DNA condensates were unusual in that the most highly condensed regions were surrounded by loops of ds GC-DNA. In contrast, AT-DNA retained its B-type conformation and displayed only minor condensation even at high Ni(II) concentrations. The Ni(II)-dependent differences in condensation between GC-DNA and AT-DNA are predicted by an extension of the electrostatic zipper motif proposed by Kornyshev and Leikin, in which we account for shorter than Debye screening length surface separations between the DNA molecules and for the Ni(II)-induced conformation change of GC-DNA to Z-DNA.  相似文献   

18.
As a coarse-gained model, a super-thin elastic rod subjected to interfacial interactions is used to investigate the condensation of DNA in a multivalent salt solution. The interfacial traction between the rod and the solution environment is determined in terms of the Young–Laplace equation. Kirchhoff’s theory of elastic rod is used to analyze the equilibrium configuration of a DNA chain under the action of the interfacial traction. Two models are established to characterize the change of the interfacial traction and elastic modulus of DNA with the ionic concentration of the salt solution, respectively. The influences of the ionic concentration on the equilibrium configuration of DNA are discussed. The results show that the condensation of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of forces that drive DNA condensation. With the change of concentration, the DNA segments will undergo a series of alteration from the original configuration to the condensed configuration, and the spiral-shape appearing in the condensed configuration of DNA is independent of the original configuration.  相似文献   

19.
Using DNA restriction fragments of 258 to 4362 base-pairs, we have investigated the influence of the DNA length on the condensation process induced by spermine, with the aid of electric dichroism measurements. The 258- and 436 bp fragments condensed into rod-like particles, while the fragments of 748 bp or more condensed into torus-shaped particles. Our results suggest that a DNA molecule longer than the circumference of the toroids observed previously (680 bp) is required to serve as a nucleus for the growth of the condensed particles. The toroids were more stable in the electric field than the rod-shaped particles, suggesting that rapid fluctuations of the bound spermine counterions can provide one of the main attractive forces yielding to the condensation process. Relaxation time data for the 436 bp fragment revealed that the structure of DNA was altered at a spermine concentration as low as one-tenth of that required for condensation: the DNA became bent in the presence of spermine. Moreover, the field strength dependence of the relaxation times, as well as the fitting of the decay curves at 12.5 kV/cm, showed an increase of the stiffness of the DNA double helix upon spermine addition. We estimated that, in the case of DNA condensation by spermine, a decrease in the measured persistence length may occur, irrespective of the DNA flexibility, owing to the bending of the DNA molecule.  相似文献   

20.
Using DNA restriction fragments of 258 to 4362 base-pairs, we have investigated the influence of the DNA length on the condensation process induced by spermine, with the aid of electric dichroism measurements. The 258- and 436 bp fragments condensed into rod-like particles, while the fragments of 748 bp or more condensed into torus-shaped particles. Our results suggest that a DNA molecule longer than the circumference of the toroids observed previously (680 bp) is required to serve as a nucleus for the growth of the condensed particles. The toroids were more stable in the electric field than the rod-shaped particles, suggesting that rapid fluctuations of the bound spermine counterions can provide one of the main attractive forces yielding to the condensation process. Relaxation time data for the 436 bp fragment revealed that the structure of DNA was altered at a spermine concentration as low as one-tenth of that required for condensation: the DNA became bent in the presence of spermine. Moreover, the field strength dependence of the relaxation times, as well as the fitting of the decay curves at 12.5 kV/cm, showed an increase of the stiffness of the DNA double helix upon spermine addition. We estimated that, in the case of DNA condensation by spermine, a decrease in the measured persistence length may occur, irrespective of the DNA flexibility, owing to the bending of the DNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号