首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retrograde signals generated by nerve growth factor (NGF) and other neurotrophins promote the survival of appropriately connected neurons during development, and failure to obtain sufficient retrograde signals may contribute to neuronal death occurring in many neurodegenerative diseases. The discovery over 25 years ago that NGF supplied to the axon terminals is retrogradely transported to the cell bodies suggested that NGF must reach the cell body to promote neuronal survival. Research during the intervening decades has produced a refinement of this hypothesis. The current hypothesis is that NGF bound to TrkA at the axon terminal is internalized into signaling endosomes, with NGF in their lumens bound to phosphorylated TrkA in their membranes, which are retrogradely transported to the cell bodies, where TrkA activates downstream signaling molecules that promote neuronal survival and regulate many aspects of neuronal gene expression. This model has been extrapolated to retrograde signaling by all neurotrophins. We consider the evidence for this model, focusing on results of experiments with neurons in compartmented cultures. Results to date indicate that while the transport of signaling endosomes containing NGF bound to TrkA may carry retrograde signals, retrograde survival signals can be carried by another mechanism that is activated by NGF at the axon terminal surface and travels to the cell body unaccompanied by the NGF that initiated it. It is hypothesized that multiple mechanisms of retrograde signaling exist and function under different circumstances. The newly discovered potential for redundancy in retrograde signaling mechanisms can complicate the interpretation of experimental results.  相似文献   

3.
Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.  相似文献   

4.
Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of approximately 4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.  相似文献   

5.
6.
Neurons transmit long-range biochemical signals between cell bodies and distant axonal sites or termini. To test the hypothesis that signaling molecules are hitchhikers on axonal vesicles, we focused on the c-Jun NH2-terminal kinase (JNK) scaffolding protein Sunday Driver (syd), which has been proposed to link the molecular motor protein kinesin-1 to axonal vesicles. We found that syd and JNK3 are present on vesicular structures in axons, are transported in both the anterograde and retrograde axonal transport pathways, and interact with kinesin-I and the dynactin complex. Nerve injury induces local activation of JNK, primarily within axons, and activated JNK and syd are then transported primarily retrogradely. In axons, syd and activated JNK colocalize with p150Glued, a subunit of the dynactin complex, and with dynein. Finally, we found that injury induces an enhanced interaction between syd and dynactin. Thus, a mobile axonal JNK-syd complex may generate a transport-dependent axonal damage surveillance system.  相似文献   

7.
To identify the structures to be rapidly transported through the axons, we developed a new method to permit local cooling of mouse saphenous nerves in situ without exposing them. By this method, both anterograde and retrograde transport were successfully interrupted, while the structural integrity of the nerves was well preserved. Using radioactive tracers, anterogradely transported proteins were shown to accumulate just proximal to the cooled site, and retrogradely transported proteins just distal to the cooled site. Where the anterogradely transported proteins accumulated, the vesiculotubular membranous structures increased in amount inside both myelinated and unmyelinated axons. Such accumulated membranous structures showed a relatively uniform diameter of 50--80 nm, and some of them seemed to be continuous with the axonal smooth endoplasmic reticulum (SER). Thick sections of nerves selectively stained for the axonal membranous structures revealed that the network of the axonal SER was also packed inside axons proximal to the cooled site. In contrast, large membranous bodies of varying sizes accumulated inside axons just distal to the cooled site, where the retrogradely transported proteins accumulated. These bodies were composed mainly of multivesicular bodies and lamellated membranous structures. When horseradish peroxidase was administered in the distal end of the nerve, membranous bodies showing this activity accumulated, together with unstained membranous bodies. Hence, we are led to propose that, besides mitochondria, the membranous components in the axon can be classified into two systems from the viewpoint of axonal transport: "axonal SER and vesiculotubular structures" in the anterograde direction and "large membranous bodies" in the retrograde direction.  相似文献   

8.
Functions of retrograde axonal transport   总被引:2,自引:0,他引:2  
Retrograde axonal transport conveys materials from axon to cell body. One function of this process is recycling of materials originally transported from cell body to axon. In motoneurons, 50% of fast-transported protein is returned. Reversal probably occurs mainly at nerve terminals and, for labeled proteins, is nonselective. Proteolysis is not required, although changes in tertiary protein structure may occur with a repackaging of molecules in organelles different from those in which they were anterograde-transported. A second function is transfer of information about axonal status and terminal environment. Premature reversal of transport adjacent to an axon injury may be a component of a signal that initiates cell body chromatolysis. Transport of target cell-derived molecules with trophic effects on the cell body is exemplified by nerve growth factor transport in neurons dependent on it, and is probably a widespread phenomenon in the developing nervous system. Disorders in retrograde transport or reversal occur in some experimental neuropathies, and certain viruses, as well as tetanus toxin, may gain access to the central nervous system by this route.  相似文献   

9.
10.
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.  相似文献   

11.
12.
Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes.  相似文献   

13.
In neurons, cytoplasmic dynein is synthesized in the cell body, but its function is to move cargo from the axon back to the cell body. Dynein must therefore be delivered to the axon and its motor activity must be regulated during axonal transport. Cytoplasmic dynein is a large protein complex composed of a number of different subunits. The dynein heavy chains contain the motor domains and the intermediate chains are involved in binding the complex to cargo. Five different intermediate chain polypeptides, which are the result of the alternative splicing of the two intermediate chain genes, have been identified. We have characterized two distinct pools of dynein that are transported from the cell body along the axon by different mechanisms. One pool, which contains the ubiquitous intermediate chain, is associated with the membranous organelles transported by kinesin in the fast transport component. The other pool, which contains the other developmentally regulated intermediate chains, is transported in slow component b. The mechanism of dynein regulation will therefore depend on which pool of dynein is recruited to function as the retrograde motor. In addition, the properties of the large pool of dynein associated with actin in slow component b are consistent with the hypothesis that this dynein may be the motor for microtubule transport in the axon.  相似文献   

14.
15.
The target-derived neurotrophic factor "nerve growth factor" (NGF) signals through TrkA to promote the survival, differentiation, and maintenance of neurons. How the NGF signal in axon terminals is conveyed to the cell body is unknown. The "signaling endosome hypothesis" envisions that NGF-TrkA complexes are internalized at the axon terminal and retrogradely transported to the cell body. Following NGF treatment, we found that clathrin-coated vesicles contained NGF bound to TrkA together with activated signaling proteins of the Ras-MAP kinase pathway. Evidence that these vesicles could signal was their ability in vitro to activate Elk, a downstream target of Erk1/2. Our results point to the existence of a population of signaling endosomes derived from clathrin-coated membranes in NGF-treated cells.  相似文献   

16.
17.
An in vitro procedure for labeling of RNA in the excised rat nodose ganglion was used to evaluate the changes in incorporation of [3H]uridine into ganglionic RNA following transection of the abdominal vagus nerves. Significant increases in the incorporation into 28S, 18S and 4S RNA were observed at 1 day after injury, which were maximal at 4 days before returning to unoperated control level by 7 days. A second transient increase in the labelling of these RNA species occurred between 9 and 11 days after injury. Comparison of the time course of these increases with those seen previously following cervical vagus nerve crush injury indicate that the time of onset of the increase in incorporation is independent of the site of injury, but that the maximal response is delayed by 1 day with the more distal lesion. These data are consistent with the existence of separate signals for initiating and modulating the cell body response to axon injury, which are transported retrogradely from the site of injury at rates exceeding the slow component of axoplasmic transport.  相似文献   

18.
Axon damage and repair in multiple sclerosis   总被引:4,自引:0,他引:4  
It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and active-chronic lesions is associated with regions of maximal density of infiltrating macrophages. Axon injury within the MS lesion will result in both Wallerian degeneration of the axon and also retrograde degeneration of the cell body. The functional consequences of the axon injury will depend upon numbers of axons injured and the topographical organization of the fibres coursing through the lesion. The molecular mechanisms by which the recruited leucocytes damage or transect the axons are not known. However, investigations in the Wld mutant mouse with very slow Wallerian degeneration demonstrate that axon degeneration is not simply a passive disintegration of the axon but has clear parallels with the active processes of programmed cell death. The presence of early axon injury and the consequences of an ever increasing load of neuronal damage has important implications not only for when therapy should be initiated in MS but also the therapeutic target.  相似文献   

19.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   

20.
Reversal of axonal transport at a nerve crush.   总被引:5,自引:0,他引:5  
Abstract— —We have compared retrograde axonal transport of 3H-labeled protein in normal rat motor and sensory axons, and axons which were injured by a distal ligation of the sciatic nerve. After injection of L-[3H]leucine into the vicinity of the neuron cell bodies, labeled protein was transported into the axons. A premature return of protein towards the cell bodies occurred in the injured axons, which we interpret as a reversal of axonal transport occurring at the site of injury. We estimate that reversal of transport occurred within 1.9–2.4 h of the arrival of labeled protein at the injury, and that the minimum velocity of the subsequent retrograde transport was 112–133 mm day?1. The ability of the injured axons to reverse transport developed about 0.8 h after making the injury. A large fraction of the orthograde transported protein was returned towards the cell body: it is estimated that by 28 h after labeled protein in sensory axons reached the injury, 46% of the3H-labeled protein originally transported to the injury site had been returned. In intact sensory nerves at this time only 15% of the transported protein had returned. It is suggested that axonal injury produces a sudden increase in the return of newly synthesized protein to the cell body, and that this might serve as a signal for chromatolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号