首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.  相似文献   

2.
Retrograde neurotrophin signaling: Trk-ing along the axon   总被引:14,自引:0,他引:14  
Target-derived neurotrophins are required for the growth and survival of innervating neurons. When released by postsynaptic targets, neurotrophins bind receptors (Trks) on nerve terminals. Activated Trks signal locally within distal axons and retrogradely through long axons to distant cell bodies in order to promote gene expression and survival. Although the mechanism of retrograde neurotrophin signaling is not fully elucidated, considerable evidence supports a model in which the vesicular transport of neurotrophin-Trk complexes transmits a survival signal that involves PI3K and Erk5. Other, non-vesicular modes of retrograde signaling are likely to function in parallel. Recent studies highlight the importance of the location of stimulation as a determinant of Trk signaling. Defects in signaling from distal axons to cell bodies may be causally related to neurodegenerative disorders.  相似文献   

3.
ABSTRACT: Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional evaluation analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals. In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.  相似文献   

4.
5.
周围神经损伤后外源性GKNF对神经元的保护作用   总被引:1,自引:0,他引:1  
Chen ZY  Cao L  Lu CL  He C  Bao X 《生理学报》2000,52(4):295-300
采用硅管套接大鼠切断的坐骨神经模型,局部给予胶质细胞源性神经营养因子(GDNF),应用尼氏染色、酶组织化学染色方法,观察到外源性GDNF能减少脊髓修复侧前角运动神经元死亡的数目,降低脊髓前角运动神经元及脊神经节感觉神经元中胆碱酯酶(CHE)及酸性磷酸酶(ACP)变化的幅度。这表明外源性GDNF能保护周围神经切断后引起的神经元损伤.  相似文献   

6.
Geng XJ  Lu XF  Zhang LC  Zeng YM 《生理学报》2008,60(4):469-474
为观察坐骨神经慢性压迫性损伤(chronic constriction injury,CCI)后大鼠远位触液神经元(distal cerebrospinal fluid con-tacting neurons,dCSF-CNs)中drebrin的表达,探讨免疫荧光技术用于dCSF-CNs研究的可能性,将雄性Sprague-Dawley大鼠随机分为空白对照组、假手术组和CCI组,采用侧脑室注射霍乱毒素亚单位B(choleratoxin subunit B,CB)与辣根过氧化物酶(horseradish peroxidase,HRP)结合物(CB-HRP)示踪标记大鼠dCSF-CNs,观测三组大鼠行为学评分,并应用免疫荧光双标记和激光共聚焦显微镜技术比较各组dCSF-CNs中drebrin的表达.结果显示,三组中仅CCI组大鼠痛阈下降,三组大鼠dCSF-CNs均显示清晰,空白对照组和假手术组dCSF-CNs胞浆内无drebrin表达,CCI组dCSF-CNs胞浆内drebrin表达较多.结果表明,应用免疫荧光双标记观察dCSF-CNs,形态清晰,技术可靠.dCSF-CNs可能参与了神经病理性疼痛的信息传递.  相似文献   

7.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

8.
9.
The aim of this paper is to show the activity cage as a viable method for tracking functional nerve recovery. The activity cage measures spontaneous coordinate activity, meaning movement in either the horizontal or vertical plane, of experimental animals within a specified amount of time. This uses a minimum of researcher time conducting functional testing to determine functional recovery of the nerve. Using microsurgical forceps, a crush injury was inflicted unilaterally, on the left side, upon the 4-month-old C3H mice creating a very high degree of pressure for 6 s upon the exposed sciatic nerve. The locomotion function of the mice was evaluated using the activity cage preoperatively, 1, 7, 14, 21, and 28 days after the surgical procedure. We found that using the activity cage functional recovery occurred by 14 days after nerve crush injury. It was also shown that, coinciding with functional recovery, immunohistochemistry changes for GD1a and nNOS appeared at the level of L4, where the sciatic nerve joins the spinal column. GD1a and nNOS have both been linked to regenerative processes in mammalian nervous systems.  相似文献   

10.
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN–endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3?days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.  相似文献   

11.
The hypothesis is explored that CRPS I (the "new" RSD) persists due to undiagnosed injured joint afferents, and/or cutaneous neuromas, and/or nerve compressions, and is, therefore, a misdiagnosed form of CRPS II (the "new" causalgia). An IRB-approved, retrospective chart review on a series of 100 consecutive patients with "RSD" identified 40 upper and 30 lower extremity patients for surgery based upon their history, physical examination, neurosensory testing, and nerve blocks. Based upon decreased pain medication usage and recovery of function, outcome in the upper extremity, at a mean of 27.9 months follow-up (range of 9 to 81 months), gave results that were excellent in 40% (16 of 40 patients), good in 40% (16 of 40 patients) and failure 20% (8 of 40 patients). In the lower extremity, at a mean of 23.0 months follow-up (range of 9 to 69 months) the results were excellent in 47% (14 of 30 patients), good in 33% (10 of 30 patients) and failure 20% (6 of 30 patients). It is concluded that most patients referred with a diagnosis of CRPS I have continuing pain input from injured joint or cutaneous afferents, and/or nerve compressions, and, therefore, similar to a patient with CRPS II, they can be treated successfully with an appropriate peripheral nerve surgical strategy.  相似文献   

12.
Action potentials (APs) and impulse responses in the soma and axon of the rapidly and slowly adapting (SA) abdominal stretch receptor neurons of the crayfish (Astacus leptodactylus) were recorded with single microelectrode current-clamp technique. Impulse frequency response to constant current injection was almost constant in the SA neuron while the response decayed completely in the rapidly adapting (RA) neuron. Mean impulse frequency responses to current stimulations were similar in the receptor neuron pairs. In the RA neuron additional current steps evoked additional impulses while a sudden drop in the current amplitude caused adaptation. Impulse duration was dependent on the rate of rise when current ramps were used. Adaptation was facilitated when calculated receptor current was used. Exposing the neuron to 3 mmol/l TEA or scorpion venom resulted in partly elongated impulse responses. SA neuron could continuously convert the current input into impulse frequency irrespective of previous stimulation conditions. Exposing the SA neuron to 3 mmol/l TEA or 1 mmol/l Lidocaine reduced impulse duration to large current stimulations. The SA neuron fired spontaneously if it was exposed to 5-10 mmol/l Lidocaine or 10(-2) mg/ml Leiurus quinquestriatus venom. The action potential (AP) amplitudes in the RA soma, RA axon, SA soma, and SA axon were significantly different between components of all pairs. Duration of the AP in the axon of the RA neuron was significantly shorter than those in the RA soma, SA soma, and SA axon. Diameter of the RA axon was larger than that of the SA axon. Non-adapting impulse responses were promptly observed only in the SA axons. The results indicate that the RA neuron is a sort of rate receptor transducing the rapid length changes in the receptor muscle while the SA neuron is capable of transducing the maintained length changes in the receptor muscle. The differences in firing properties mainly originate from the differences in the active and passive properties of the receptor neurons.  相似文献   

13.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

14.
15.
A successful nerve regeneration process was achieved with nerve repair tubes made up of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linked carboxymethyl chitosan (CM-chitosan) with improved biodegradability. Chitosan has a very slow degradation rate, while the EDC cross-linked CM-chitosan tubes degraded to 30% of original weight during 8 weeks of incubation in lysozyme solution. In vitro cell culture indicated that the CM-chitosan films presented no cytotoxicity to Schwann cells. From in vivo studies using a 10 mm rat sciatic nerve defect model investigated by histomorphometry analysis, the average diameter of the fibers and the average thickness of myelin sheath in the CM-chitosan tubes were 3.7 ± 0.33 and 0.33 ± 0.04 μm, respectively, which demonstrated equivalence to nerve autografts (the current “gold” standard); furthermore, the average fiber density in the CM-chitosan tubes was 20.5 × 103/mm2, which was similar to that of autografts (21 × 103/mm2) and significantly higher than that of common chitosan tubes (15.3 × 103/mm2).  相似文献   

16.
17.
Besides cerebreside and sulfatide four other glycolipids were isolated from rabbit sciatic nerve and analyzed by chemical and chromatographic methods. Three of the glycolipids were shown to be fatty acid esters of cerebroside; the fourth was characterized as diacyl glycerol galactoside and its alkyl ether analog. In the ester linkage mainly unsubstituted acids with chain length C(16) to C(18) were present. Both hydroxy and unsubstituted acids were found in amide linkage. They varied in chain length from C(16) to C(24) and were typical of cerebrosides. The long-chain base fraction contained sphingosine and dihydrosphingosine as the main components.  相似文献   

18.
19.
Shi M  Liu Z  Lv Y  Zheng M  Du F  Zhao G  Huang Y  Chen J  Han H  Ding Y 《PloS one》2011,6(1):e14570

Background

A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown.

Methodology/Principal Findings

In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged.

Conclusions/Significance

We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.  相似文献   

20.
1. Axoplasmic proteins were fractionated by means of Sephadex G-200 chromatography followed by isoelectric focusing. Nine groups of proteins were separated. 2. The binding of colchicine to these groups of proteins was examined and it appeared to associate most strongly with one protein group, of pI value 4.9-5.0, which is the major (14)C-labelled component of slow-transport protein. 3. Other fractions also bind colchicine. It is not clear whether these are separate proteins or subunits of the major colchicine-binding fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号