首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Papaya mosaic virus (PapMV) coat protein (CP) in Escherichia coli was previously showed to self-assemble in nucleocapsid-like particles (NLPs) that were similar in shape and appearance to the native virus. We have also shown that a truncated CP missing the N-terminal 26 amino acids is monomeric and loses its ability to bind RNA. It is likely that the N-terminus of the CP is important for the interaction between the subunits in self-assembly into NLPs. In this work, through deletion and mutation analysis, we have shown that the deletion of 13 amino acids is sufficient to generate the monomeric form of the CP. Furthermore, we have shown that residue F13 is critical for self-assembly of the CP subunits into NLPs. The replacement of F13 with hydrophobic residues (L or Y) generated mutated forms of the CP that were able to self-assemble into NLPs. However, the replacement of F13 by A, G, R, E or S was detrimental to the self-assembly of the protein into NLPs. We concluded that a hydrophobic interaction at the N-terminus is important to ensure self-assembly of the protein into NLPs. We also discuss the importance of F13 for assembly of other members of the potexvirus family.  相似文献   

2.
Rioux G  Majeau N  Leclerc D 《The FEBS journal》2012,279(11):2004-2011
In general, the structure of the papaya mosaic virus (PapMV) and other members of the potexviruses is poorly understood. Production of PapMV coat proteins in a bacterial expression system and their self-assembly in vitro into nanoparticles is a very useful tool to study the structure of this virus. Using recombinant PapMV nanoparticles that are similar in shape and appearance to the plant virus, we evaluated surface-exposed regions by two different methods, immunoblot assay and chemical modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide or diethyl-pyrocarbonate followed by mass spectrometry. Three regions were targeted by the two techniques. The N- and C-termini were shown to be surfaced exposed as expected. However, the region 125-136 was revealed for the first time as the major surface-exposed region of the nanoparticles. The presence of linear peptides at the surface was finally confirmed using antibodies directed to those peptides. It is likely that region 125-136 plays a key role in the lifecycle of PapMV and other members of the potexvirus group.  相似文献   

3.
Molecular characterization of cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strain CP Rit, a temperature-sensitive strain widely used for vaccination, revealed that the viral genomic RNA is about 15.2 kb long, which is about 2.9 kb longer than the one of noncytopathogenic (noncp) BVDV strains. Molecular cloning and nucleotide sequencing of parts of the genome resulted in the identification of a duplication of the genomic region encoding nonstructural proteins NS3, NS4A, and part of NS4B. In addition, a nonviral sequence was found directly upstream of the second copy of the NS3 gene. The 3′ part of this inserted sequence encodes an N-terminally truncated ubiquitin monomer. This is remarkable since all described cp BVDV strains with ubiquitin coding sequences contain at least one complete ubiquitin monomer. The 5′ region of the nonviral sequence did not show any homology to cellular sequences identified thus far in cp BVDV strains. Databank searches revealed that this second cellular insertion encodes part of ribosomal protein S27a. Further analyses included molecular cloning and nucleotide sequencing of the cellular recombination partner. Sequence comparisons strongly suggest that the S27a and the ubiquitin coding sequences found in the genome of CP Rit were both derived from a bovine mRNA encoding a hybrid protein with the structure NH2-ubiquitin-S27a-COOH. Polyprotein processing in the genomic region encoding the N-terminal part of NS4B, the two cellular insertions, and NS3 was studied by a transient-expression assay. The respective analyses showed that the S27a-derived polypeptide, together with the truncated ubiquitin, served as processing signal to yield NS3, whereas the truncated ubiquitin alone was not capable of mediating the cleavage. Since the expression of NS3 is strictly correlated with the cp phenotype of BVDV, the altered genome organization leading to expression of NS3 most probably represents the genetic basis of cytopathogenicity of CP Rit.  相似文献   

4.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.  相似文献   

5.
This paper summarizes some structural characteristics of Potato virus X (PVX), the flexuous filamentous plant potexvirus. A model of PVX coat protein (CP) tertiary structure in the virion proposed on the basis of tritium planigraphy combined with predictions of the protein tertiary structure is described. A possible role of glycosylation and phosphorylation in the CP structure and function is discussed. Two forms of PVX virion disassembly are discussed: (i) the virion co-translational disassembly after PVX CP in situ phosphorylation and (ii) disassembly of PVX triggered by different factors after linear destabilization of the virion by binding of the PVX-coded movement protein (TGBp1) to one end of the polar CP-helix. Special emphasis was placed on a translational activation of encapsidated PVX RNA and rapid disassembly of TGBp1-PVX complexes into free RNA and CP. The results of experiments on the PVX CP repolymerization and PVX reconstitution are considered. In particular, the products assembled from PVX RNA, CP and TGBp1 were examined. Single-tailed particles were found with a helical, head-like structure consisting of helically arranged CP subunits located at the 5'-tail of RNA; the TGBp1 was bound to the end of the head. Translatable 'RNA-CP-TGBp1' complexes may represent the transport form of the PVX infection.  相似文献   

6.
Molecular analysis of a cytopathogenic (cp) bovine viral diarrhea virus (BVDV) isolate (1741) obtained from a case of mucosal disease (MD) led to the identification of five different viral subgenomic RNAs in addition to a noncytopathogenic (noncp) strain (NCP 1741). For each of the subgenomes, a large internal deletion was found together with an inserted sequence encoding part of ribosomal protein S27a fused to an N-terminally truncated ubiquitin monomer. Surprisingly, the two cellular insertions together with flanking viral sequences encoding parts of NS3 and NS4B are >99% identical to the previously described sequence of BVDV vaccine strain RIT (P. Becher, M. Orlich, and H.-J. Thiel, J. Virol. 72:8697-8704, 1998), while the remainder of the subgenomes is derived from the genome of NCP 1741. Further analyses including molecular cloning and nucleotide sequencing of the recombination partners revealed that both homologous and nonhomologous RNA recombination contributed to the generation of the viral subgenomes. Interestingly, for another cp BVDV isolate (CP 4584) from an independent case of MD, again an insertion of a RIT-derived sequence element was detected. In contrast to CP 1741, for CP 4584 a duplication of the genomic region encoding NS3 and parts of NS4A and NS4B was found. Transfection of bovine cells with RNA transcribed from a chimeric cDNA construct showed that the RIT-derived insertion together with the CP 4584-specific duplication of viral sequences represents the genetic basis of cytopathogenicity of CP 4584. Remarkably, passages of the recovered cp virus in cell culture led to emergence of noncp BVDV and a number of viral subgenomes whose genome organization was similar to that in BVDV 1741.  相似文献   

7.
Papaya mosaic potexvirus (PapMV) coat protein (CP) was expressed (CPdeltaN5) in Escherichia coli and showed to self assemble into nucleocapsid like particles (NLPs). Twenty per cent of the purified protein was found as NLPs of 50 nm in length and 80% was found as a multimer of 450 kDa (20 subunits) arranged in a disk. Two mutants in the RNA binding domain of the PapMV CP, K97A and E128A showed interesting properties. The proteins of both mutants could be easily purified and CD spectra of these proteins showed secondary and tertiary structures similar to the WT protein. The mutant K97A was unable to self assemble and bind RNA. On the contrary, the mutant E128A showed an improved affinity for RNA and self assembled more efficiently in NLPs. E128A NLPs were longer (150 nm) than the recombinant CPdeltaN5 and 100% percent of the protein was found as NLPs in bacteria. E128A NLPs were more resistant to digestion by trypsin than the CPdeltaN5 but were more sensitive to denaturation by heat. We discuss the possible role of K97 and E128 in the assembly of PapMV.  相似文献   

8.
Rioux G  Babin C  Majeau N  Leclerc D 《PloS one》2012,7(2):e31925
Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine.  相似文献   

9.
More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures.  相似文献   

10.
Papaya mosaic virus (PapMV) like particles (VLPs) were used as a platform for fusion of affinity peptides binding to resting spores of Plasmodiophora brassicae-a major pathogen of crucifers. Three peptides with specific affinity to the target were isolated and cloned at the C-terminus of the PapMV coat protein (CP), generating three different high avidity VLPs. The peptides were exposed at the surface of the VLPs and their avidity to resting spores of P. brassicae was measured by flow cytometry. NLP-A, with the peptide DPAPRPR, showed the highest avidity. The binding avidity of NLP-A to P. brassicae spores was comparable to that of a polyclonal antibody. NLP-A was also shown to be more specific than the antibody. Fusion of the affinity peptide to a monomeric form (mCP) of the CP [Lecours, K., Tremblay, M.-H., Laliberté Gagné, M.-E., Gagné, S.M., Leclerc, D., 2006. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Express. Purific. 47, 273-280] generated a fusion protein that was unable to assemble into VLPs, and mCP-A fusions failed to bind resting spores. The avidity of VLP-A was increased by adding a glycine spacer between the C-terminus of the PapMV CP and the peptide, and improved even further by using a duplicated A peptide in the fusion protein. The use of high avidity VLPs has advantages over polyclonal antibodies because of target specificity. VLPs offers the specificity of monoclonal antibodies but can be more easily generated using the powerful selection of phage display.  相似文献   

11.
The number of regulatory RNAs with identified non-canonical structures is increasing, and structural transitions often play a role in their biological function. This stimulates interest in internal motions of RNA, which can underlie structural transitions. Heteronuclear NMR relaxation measurements, which are commonly used to study internal motion, only report on local motions of few sites within the molecule. Here we have studied a 27-nt segment of the human hepatitis B virus (HBV) pregenomic RNA, which is essential for viral replication. We combined heteronuclear relaxation with the new off-resonance ROESY technique, which reports on internal motions of H,H contacts. Using off-resonance ROESY, we could for the first time detect motion of through-space H,H contacts, such as in intra-residue base-ribose contacts or inter-nucleotide contacts, both essential for NMR structure determination. Motions in non-canonical structure elements were found primarily on the sub-nanosecond timescale. Different patterns of mobility were observed among several mobile nucleotides. The most mobile nucleotides are highly conserved among different HBV strains, suggesting that their mobility patterns may be necessary for the RNA’s biological function.  相似文献   

12.
The extra small virus (XSV) is a satellite virus associated with Macrobrachium rosenbergii nodavirus (MrNV) and its genome consists of two overlapping ORFs, CP17 and CP16. Here we demonstrate that CP16 is expressed from the second AUG of the CP17 gene and is not a proteinase cleavage result of CP17. We further expressed CP17 and several truncated CP17s (in which the N- or C-terminus or both was deleted), respectively, in Escherichia coli. Except for the recombinant plasmid CP17ΔC10, all recombinant plasmids expressed soluble protein which assembled into virus-like particles (VLPs), suggesting that the C-terminus is important for VLP formation.  相似文献   

13.
Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.  相似文献   

14.

Background

Crystal structures of the tobacco mosaic virus (TMV) coat protein (CP) in its helical and disk conformations have previously been determined at the atomic level. For the helical structure, interactions of proteins and nucleic acids in the main chains were clearly observed; however, the conformation of residues at the C-terminus was flexible and disordered. For the four-layer aggregate disk structure, interactions of the main chain residues could only be observed through water–mediated hydrogen bonding with protein residues. In this study, the effects of the C-terminal peptides on the interactions of TMV CP were investigated by crystal structure determination.

Methodology/Principal Findings

The crystal structure of a genetically engineered TMV CP was resolved at 3.06 Å. For the genetically engineered TMV CP, a six-histidine (His) tag was introduced at the N-terminus, and the C-terminal residues 155 to 158 were truncated (N-His-TMV CP19). Overall, N-His-TMV CP19 protein self-assembled into the four-layer aggregate form. The conformations of residues Gln36, Thr59, Asp115 and Arg134 were carefully analyzed in the high radius and low radius regions of N-His-TMV CP19, which were found to be significantly different from those observed previously for the helical and four-layer aggregate forms. In addition, the aggregation of the N-His-TMV CP19 layers was found to primarily be mediated through direct hydrogen-bonding. Notably, this engineered protein also can package RNA effectively and assemble into an infectious virus particle.

Conclusion

The terminal sequence of amino acids influences the conformation and interactions of the four-layer aggregate. Direct protein–protein interactions are observed in the major overlap region when residues Gly155 to Thr158 at the C-terminus are truncated. This engineered TMV CP is reassembled by direct protein–protein interaction and maintains the normal function of the four-layer aggregate of TMV CP in the presence of RNA.  相似文献   

15.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

16.
A new RNA of about 900 nt was found in the virions of cocksfoot mottle virus (CfMV) and in infected plants by RNA hybridization and RT-PCR. Structural features suggested that this RNA is a defective interfering RNA (diRNA). The CfMV diRNA was shown to consist of a 35-nt 5′-terminal genomic region, which formed a hairpin, and a 3′-terminal genomic region, which included the coat protein (CP) gene lacking the first 120 nt.In vitro translation of the diRNA started at the third Met codon to produce truncated CP. The CfMV diRNA was assumed totrans-activate synthesis of the CP subgenomic RNA (sgRNA).  相似文献   

17.
The extra small virus (XSV) is a satellite virus associated with Macrobrachium rosenbergii nodavirus (MrNV) and its genome consists of two overlapping ORFs, CP17 and CP16. Here we demonstrate that CP16 is expressed from the second AUG of the CP17 gene and is not a proteinase cleavage result of CP17. We further expressed CP17 and several truncated CP17s (in which the N-or C-terminus or both was deleted), respectively, in Escherichia coli. Except for the recombinant plasmid CP17δC10, all recombinant plasmids expressed soluble protein which assembled into virus-like particles (VLPs), suggesting that the C-terminus is important for VLP formation. Foundation item: National Natural Science Foundation of China (30370057).  相似文献   

18.
It has been shown by X-ray analysis that cores of coat proteins (CPs) from three potexviruses, flexible helical RNA-containing plant viruses, have similar α-helical structure. However, this similarity cannot explain structural lability of potexvirus virions, which is believed to determine their biological activity. Here, we used circular dichroism (CD) spectroscopy in the far UV region to compare optical properties of CPs from three potexviruses with the same morphology and similar structure. CPs from Alternanthera mosaic virus (AltMV), potato aucuba mosaic virus (PAMV), and potato virus X (PVX) have been studied in a free state and in virions. The CD spectrum of AltMV virions was similar to the previously obtained CD spectrum of papaya mosaic virus (PapMV) virions, but differed significantly from the CD spectrum of PAMV virions. The CD spectrum of PAMV virions resembled in its basic characteristics the CD spectrum of PVX virions characterized by molar ellipticity that is abnormally low for α-helical proteins. Homology modeling of the CP structures in AltMV, PAMV, and PVX virions was based on the known high-resolution structures of CPs from papaya mosaic virus and bamboo mosaic virus and confirmed that the structures of the CP cores in all three viruses were nearly identical. Comparison of amino acid sequences of different potexvirus CPs and prediction of unstructured regions in these proteins revealed a possible correlation between specific features in the virion CD spectra and the presence of disordered N-terminal segments in the CPs.  相似文献   

19.
The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like fold that consists of two structural domains and constitutes the catalytic machinery; the other is the C-terminal helical domain, which has an unclear function and is not found in other RNA virus main proteases. To understand the functional roles of the two structural parts of the SARS-CoV main protease, we generated the full-length of this enzyme as well as several terminally truncated forms, different from each other only by the number of amino acid residues at the C- or N-terminal regions. The quaternary structure and K(d) value of the protease were analyzed by analytical ultracentrifugation. The results showed that the N-terminal 1-3 amino acid-truncated protease maintains 76% of enzyme activity and that the major form is a dimer, as in the wild type. However, the amino acids 1-4-truncated protease showed the major form to be a monomer and had little enzyme activity. As a result, the fourth amino acid seemed to have a powerful effect on the quaternary structure and activity of this protease. The last C-terminal helically truncated protease also exhibited a greater tendency to form monomer and showed little activity. We concluded that both the C- and the N-terminal regions influence the dimerization and enzyme activity of the SARS-CoV main protease.  相似文献   

20.
Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the "labeled" nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号