首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine whether the effects of estrogen on lordosis behavior in the male rat were related to the number of progesterone (P) receptors in the mediobasal hypothalamus (MBH) and/or dependent on blood P concentration. Two groups of gonadally intact male rats were given five successive doses of 1.0 or 2.5 micrograms estradiol benzoate (EB) and tested for lordosis behavior with a male stimulus at the end of the treatment. One month later they were again injected with EB and sacrificed under the same temporal schedule, but they were not tested for lordosis so as to prevent any emotionally stressful effects of intermale cohabitation. The males given 2.5 micrograms EB more frequently displayed lordosis responses to male mounts than those receiving 1 microgram EB, with a parallel increase in the number of MBH P receptors. The total number of MBH P receptors also appeared to be higher in the animals that displayed lordosis responses (lordosis group) than in those which did not (no lordosis group). In contrast, the display of lordosis behavior was negatively correlated with blood P concentration. Comparing MBH P receptors and blood P values in the EB treated and in nonhormonally treated gonadally intact animals which had been selected for either ability or inability to spontaneously display lordosis behavior, we observed that (1) EB was capable of increasing the number of MBH P receptors in the male rat; and (2) in the absence of EB treatment blood P values were higher in the animals showing lordosis than in those which did not. These data are discussed with respect to observations made in castrated male rats and in ovariectomized females.  相似文献   

2.
Although destruction of the septal region markedly facilitates the lordosis behavior of female rats in response to estrogen priming, comparable lesions were found to be ineffective in facilitating the lordotic behavior of estrogen primed male rats. Neither the age at the time of septal destruction nor castration influenced the lordosis behavior of males. However, if prepubertal castrated males were given subcutaneous ovarian grafts or injected daily with 2 μgm estradiol benzoate (EB) during the 30 day period following septal destruction, a prolonged facilitation of the activational effects of EB on lordosis behavior was observed. Male rats subjected to septal destruction alone, chronic exposure to EB alone, exposure to ovarian grafts for 30 days prior to septal destruction, or chronic treatment with EB started 6 mo after septal lesioning, failed to show an increase in behavioral responsiveness to estrogen. Thus, in order for septal lesions to facilitate lordosis behavior of male rats, exposure to EB or ovarian tissue must occur within an apparent critical period following septal destruction. Adult male rats were found to be more responsive to this interaction of septal lesions and EB exposure than pubertal animals. It is suggested that the prolonged facilitation of lordosis behavior which follows septal destruction and estrogen exposure in the male rat may be due to hormonal modifications of the recovery process following brain damage.  相似文献   

3.
The aim of this study was to investigate the olfactory mechanisms regulating the display of lordosis behavior in intact Wistar male rats bred in our colony. Gonadally intact males show a low capacity to respond by lordosis to male mounts and were insensitive to manipulations of the olfactory system (exposure to the odor of male urine or accessory bulb removal (AOBR)) which have been previously shown to facilitate the display of lordosis behavior in orchidectomized animals primed with ovarian hormones. Treatment with either estradiol benzoate (EB) or EB and progesterone (P) consecutively did not render these gonadally intact animals sensitive to the effects of AOBR. By contrast exposure to male urine was capable of facilitating the display of lordosis behavior in intact male rats given EB + P consecutively. These results are discussed in the light of previous findings showing that (1) two inhibitory structures, the accessory olfactory bulb and the septal and preoptic areas, are involved in the control of lordosis behavior in the male rat; (2) the effects of olfactory cues on the display of lordosis behavior are dependent on the action of both EB and P in orchidectomized animals.  相似文献   

4.
Two estrogen antagonists, CI-628 (CI) and tamoxifen (TX), were used to examine the relationship between estrogen priming of lordosis behavior and progestin receptor induction in the hypothalamus-preoptic area (HPOA) of ovariectomized female rats. Lordosis behavior was assessed by measuring lordosis quotients (LQ) in response to injection of 2 micrograms of estradiol benzoate (EB) followed 48 hr later by 500 micrograms of progesterone (P). Behavior testing began 4 hr after P injection. The effects of antiestrogens were assessed by injecting CI and TX (1-2 mg) from 0 to 48 hr prior to EB. Levels of cytosol progestin receptor in the HPOA were determined by quantifying the specific binding of 0.5 nM [3H]R5020 to cytosols from animals receiving the same EB and antiestrogen treatments used in behavioral testing. TX given concurrently with or CI given 2 hr before EB abolished both lordosis behavior and induction of HPOA progestin receptors. In contrast, CI given 12 hr prior to EB abolished lordosis but permitted a 95% elevation in the concentration of progestin binding sites in the HPOA. TX or CI given 48 hr before EB resulted in moderate levels of lordosis (mean LQs from 56 to 69) and induction of HPOA progestin receptors from 85 to 130% above noninjected controls. However, CI given 24 hr prior to EB produced less than a 40% increase in brain R5020 binding even though lordosis behavior was equivalent to that seen in the 48-hr animals (mean LQ = 53). These data indicate that the effects of antiestrogens on female sexual behavior and on the synthesis of brain progestin receptors depend on which antiestrogen is used and the time interval between administration of estrogen and antiestrogen. They also demonstrate that under some conditions estrogen induction of cytosol progestin receptors in the HPOA can be dissociated from estrogen priming of lordosis behavior in rats.  相似文献   

5.
In order to examine a possible role of adrenaline (AD) or noradrenaline (NA) in the control of lordosis behavior, lordosis quotient (LQ) was observed daily for 8 consecutive days in the ovariectomized rat given daily 1 or 2 microgram/0.1 ml oil of estradiol benzoate (EB) alone or together with 100 microgram/0.1 ml saline of AD or NA. AD but not NA treated together with EB caused a greater change in the daily LQ than the same dose of EB alone and the change in the daily LQ by daily treatment with both 1 microgram EB and 100 microgram AD was equivalent to that by daily treatment with 2 microgram EB alone. A half mg progesterone (P) could induce the lordosis behavior in the ovariectomized rat treated 48 hr prior with both 1 microgram EB and 50 or 100 microgram AD, but not in the one treated with 1 microgram EB alone. While 50, 100 or 200 microgram NA or 10 microgram AD had no effect, 50 or 100 microgram AD pretreated together with 2 microgram EB produced a markedly higher LQ after P than 2 microgram EB alone in the ovariectomized rat. This effect of AD on the induction of lordosis behavior was produced only when AD was pretreated simultaneously with EB and AD priming 24 or 43 hr after EB failed to elicit the effect. Therefore, it is suggested that a change of the brain target site in the estrogen sensitivity produced by AD plays a part in the control of lordosis behavior.  相似文献   

6.
The purpose of this study was to determine whether facilitory effects exerted by olfactory cues on lordosis behavior in the male rat involved changes in estradiol receptors at the hypothalamic level. Male rats were orchidectomized as adults. They were given either 25 micrograms estradiol benzoate (EB) alone or 25 micrograms EB and 100 micrograms progesterone (P) sequentially and exposed or not to the odor of male urine. Some of them were tested for lordosis behavior at 8 h after P. The other ones were killed 4 h after P and used for estradiol (E2) and P receptor assay in mediobasal hypothalamus (MBH). Olfactory cues were shown to increase the number of E2 receptors in both the animals given EB or EB + P. Progesterone as such appeared to be capable of increasing the number and the rate of occupancy of E2 receptors. A population of constitutive and estrogen-inducible P receptors was detected in the MBH. Since only the animals given EB + P were shown to be sensible to the facilitory effects of male urine on lordosis behavior, it may be assumed that E2 and P on one hand and olfactory cues on the other exert cumulative effects at the level of the MBH and that both a high level and a high rate of occupancy of E2 receptors are necessary for the olfactory cues to facilitate the display of lordosis behavior in the male rat.  相似文献   

7.
Newborn female hamsters were treated with 0.1 or 1.0 ng of estradiol benzoate (EB), with 1.0 ng–2.0 μg of the synthetic estrogen RU-2858, or with 0.1 or 0.5 μg of the antiestrogen nafoxidine. When adult the animals were treated with EB and progesterone and tested for the display of lordosis and with testosterone propionate and tested for the display of mounting behavior. The EB doses used failed to alter sexual differentiation. RU-2858 masculinized and defeminized in a dose-dependent manner being most effective when given neonatally as two divided doses. Nafoxidine inhibited lordosis without enhancing mounting behavior. The findings support the hypothesis that estrogens may be involved in the normal sexual differentiation process.  相似文献   

8.
Ovariectomized guinea pigs were given estradiol benzoate (EB) followed 40 hr later by progesterone (P). Behavioral testing commenced 1 hr after P injection and continued at hourly intervals for 8 hr. This treatment activated lordosis in almost 100% of animals. Administration of the antiestrogen MER-25 (75 mg/kg body wt per injection) between 2 hr before and 6 hr after EB treatment did not cause a significant decline in proportion of animals displaying lordosis, but did cause a decrease in length of time the lordosis position was held (maximum lordosis, sec). In contrast, 1314 animals given MER-25 at 2 hr before and 2 hr after P and 810 animals given MER-25 simultaneously with and 2 hr after P, failed to show lordosis. Administration of supplementary EB at around the time of P injection, partially alleviated these behavior-blocking effects of MER-25. When MER-25 was given 2–6 hr after administration of P there was a significant decrease in duration of heat (hr). These results suggest that in addition to its early “triggering” effects, estrogen has important “maintenance” effects which determine the character of heat in guinea pigs. Continued presence of estrogen in the nervous system may be a requirement for the facilitatory actions of P on sexual behavior in guinea pigs, but such a requirement may not exist in other rodents such as rats.  相似文献   

9.
Newborn female hamsters were treated with 0.1 or 1.0 ng of estradiol benzoate (EB), with 1.0 ng–2.0 μg of the synthetic estrogen RU-2858, or with 0.1 or 0.5 μg of the antiestrogen nafoxidine. When adult the animals were treated with EB and progesterone and tested for the display of lordosis and with testosterone propionate and tested for the display of mounting behavior. The EB doses used failed to alter sexual differentiation. RU-2858 masculinized and defeminized in a dose-dependent manner being most effective when given neonatally as two divided doses. Nafoxidine inhibited lordosis without enhancing mounting behavior. The findings support the hypothesis that estrogens may be involved in the normal sexual differentiation process.  相似文献   

10.
The relative importance of estrogen (EB) and progesterone (P) in stimulating proceptivity in ovariectomized female rats was studied. Proceptive behavior was measured quantitatively, providing a clear measure of response to experimental manipulation. When rats were tested biweekly after daily treatment with 0.4 μg/100 g body wt EB for 4 days, they showed maximal lordosis but low levels of proceptive behavior by the second test. Additional EB (3.0 μg/100 g body wt daily) failed to stimulate additional proceptivity. A graded increase in proceptive behavior resulted from administration of increasing doses of P (50, 100, 500 μg and 1.0 mg) to animals receiving EB priming as described above. The level of “soliciting” was significantly higher than EB-only-treated rats when 500 μg or 1.0 mg P was given. Ovariectomized, adrenalectomized rats, primed with 2.5 μg/100 g body wt EB daily for 7 days and tested on Day 8, were significantly less proceptive than ovariectomized, sham-adrenalectomized rats with the same hormone treatment. Four hours after injection of 1.0 mg P, there was no difference in proceptive or receptive behavior between sham- and adrenalectomized rats. It was concluded that if an EB dose is sufficient to induce maximal receptivity, additional estrogen does not stimulate proceptivity; unlike previous studies, the present data are not consistent with a global effect of ovarian steroids on both components of female behavior. Progesterone is more effective than estrogen in stimulating proceptive behavior, although proceptivity is not absolutely dependent on progesterone for expression. Proceptivity in EB-only-treated rats appears to be facilitated by adrenal P.  相似文献   

11.
Ovariectomized rats were hormonally primed with various doses of estradiol benzoate (EB; 0.5-10 microg) in combination with various doses of progesterone (2.5-500 microg) to induce sexual receptivity. Females were then subjected to 5 min restraint and the effect on lordosis behavior was monitored for the next 30 min. Such mild stress has been previously shown to transiently reduce lordosis behavior of ovariectomized females hormonally primed only with 10 microg EB. In the current study, doses of progesterone of 25 microg or more in combination with 10 microg EB reduced the effects of restraint. Also priming doses of EB from 4.0 to 10 microg in combination with 250 microg progesterone prevented the lordosis-inhibiting effects of restraint. These findings reinforce prior observations of the dose-dependency of both estrogen and progesterone in the facilitation of lordosis behavior and introduce the female's lordosis response to mild restraint as a potentially useful index of the female's response to stress.  相似文献   

12.
Previous studies suggested that opioid receptor agonists infused into the lateral ventricles can inhibit (through mu receptors) or facilitate (through delta receptors) the lordosis behavior of ovariectomized (OVX) rats treated with estrogen and a low dose of progesterone. The present study investigated the behavioral and hormonal specificity of those effects using more selective opioid receptor agonists. Sexually experienced OVX rats were implanted stereotaxically with guide cannulae aimed at the right lateral ventricle. One group of rats was treated with estradiol benzoate (EB, 10 micrograms) 48 hr and progesterone (P, 250 micrograms) 4 hr before testing, whereas the other group was treated with EB alone. Rats were infused with different doses of the selective mu-receptor agonist DAMGO, the selective delta-receptor agonist DPDPE, or the selective kappa-receptor agonist U50-488. The females were placed with a sexually vigorous male in a bilevel chamber (Mendelson and Gorzalka, 1987) for three tests of sexual behavior, beginning 15, 30, and 60 min after each infusion. DAMGO reduced lordosis quotients and magnitudes significantly in rats treated with EB and P, but not in rats treated with EB alone. In contrast, DPDPE and U50-488H increased lordosis quotients and magnitudes significantly in both steroid-treatment groups. Surprisingly, measures of proceptivity, rejection responses, and level changes were not affected significantly by mu or kappa agonists, although proceptivity and rejection responses were affected by DPDPE treatment. These results suggest that the effects of lateral ventricular infusions of opioid receptor agonists on the sexual behavior of female rats are relatively specific to lordosis behavior. Moreover, the facilitation of lordosis behavior by delta- or kappa-receptor agonists is independent of progesterone treatment, whereas the inhibitory effect of mu-receptor agonists on lordosis behavior may require the presence of progesterone.  相似文献   

13.
Antiestrogens were used to test the hypothesis that estrogen exerts a “maintenance,” as well as a “priming,” effect on rat and hamster sexual receptivity as it apparently does for guinea pigs. MER-25 (75 or 150 mg/kg) significantly reduced rat LQ when given ?2 hr or 8 hr after EB injection. MER-25 given at 34 hr (2 hr prior to P) failed to diminish rat LQ. With hamsters, MER-25 in large doses (750 mg/kg) given either at ?2 hr or 34 hr reduced lordosis duration to 40% of controls, but this effect was confounded by severe illness among the MER-25 injected animals. Lower doses failed to block behavior, but still produced some toxicity. CI 628 (50 mg/kg) greatly reduced hamster lordosis duration and increased lordosis latency when given 0 hr, but not 34 hr, after EB. The results are consistent with similar previous work on rats and do not support the concept of estrogen “maintenance” in either rats or hamsters.  相似文献   

14.
Estradiol and progesterone (P) induce female mammalian reproductive behaviors, which are, in turn, sensitive to food availability. When ovariectomized, steroid-primed hamsters are food deprived for 48 h, estrous behavior is suppressed. While this suppression of estrous behavior may be due to alterations in neural steroid receptor levels, it is also possible that decreased levels of circulating estradiol could be involved in mediating this suppression. Ovariectomized Syrian hamsters given varying doses of estradiol benzoate (EB) and P were tested to determine whether increasing doses of sex steroids would overcome the suppressive effects of food deprivation on estrous behavior. As expected, lordosis duration decreased in food-deprived animals. Increasing the levels of EB, but not P, increased lordosis duration in the food-deprived animals so that animals who were given 20 microg of EB had lordosis durations significantly longer than food-deprived hamsters that received 1.5 microg and 2.5 microg EB. Following an injection of 2.5 microg of EB, food-deprived hamsters actually had higher circulating levels of estradiol than ad libitum-fed animals. Therefore, increasing circulating levels of estradiol can increase lordosis durations in fasted animals; however, the suppression of estrous behavior occurs despite increased circulating estradiol levels in ovariectomized, steroid-treated animals. The most parsimonious explanation for this phenomenon is a deprivation-induced reduction in neural responsiveness to estradiol.  相似文献   

15.
Spayed female rats were given bilateral septal lesions or a sham operation and 3 wk later tested for hormone-induced female sexual behavior. When primed with 0.5, 1.0, or 2.0 μg of estradiol benzoate (EB) per day for 3 days and tested for lordosis behavior on the fourth day, animals with septal lesions showed a positive dose-related increase in mean lordosis quotient (LQ), whereas control animals showed a low mean LQ for all doses of EB. After priming with a low dose of EB (0.5 μg/day for 3 days), progesterone administration prior to behavior testing on day 4 produced a comparable facilitation in LQ for both septal-lesioned and sham-operated animals. When treated for 3 days with either 50 or 150 μg of testosterone propionate (TP) and given progesterone prior to behavior testing on day 4, female rats with septal lesions showed a higher mean LQ than sham-operated rats. Thus, septal lesions increase the behavioral sensitivity of female rats to both EB and TP as measured by female sexual behavior, but do not appear to alter the responsiveness of animals to progesterone.  相似文献   

16.
In addition to displaying proceptive (hopping and darting) and receptive (lordosis) behaviors during a sexual encounter with a male, female rodents will regulate the timing of the encounter by engaging in a series of approaches and withdrawals from the male, a behavior termed paced mating behavior. Proceptive, receptive, and paced mating behaviors are all regulated by, and sensitive to, estrogen and progesterone, suggesting that compounds capable of disrupting these critical hormones may also perturb the display of female sexual behavior. The present experiments examined the impact of the selective estrogen receptor modulator (SERM) tamoxifen and a popular soy phytoestrogen dietary supplement on female sexual behavior in rats. Ovariectomized female rats were given either tamoxifen (TAMOX) by implant or the soy supplement through the diet then injected with estradiol benzoate (EB, 10 microg) or oil followed 48 h later with an injection of progesterone (P, 500 microg). Animals were then tested for sexual behavior 4 h after the P injection. Neither compound had any effect on sexual behavior when administered in conjunction with P alone; however, both significantly diminished receptive behavior, as measured by the lordosis quotient (LQ), in animals primed with both EB and P. Similarly, the hopping and darting rate was also significantly depressed in both the soy- and TAMOX-treated animals, compared to the EB- and P-treated controls, with the soy-treated animals showing significantly less proceptive behavior than the TAMOX-treated animals. Finally, soy but not TAMOX significantly attenuated paced mating behavior in animals compared to the EB- and P-treated controls. These results demonstrate that both the soy supplement and TAMOX act as estrogen antagonists on both proceptive and receptive behavior in female rats.  相似文献   

17.
The progestin receptor antagonist RU 38486 (henceforth referred to as RU 486) was tested for facilitative effects on female receptive behavior in ovariectomized Long-Evans rats primed with 2 micrograms estradiol benzoate (EB). RU 486 (0, 0.5, 1.6, or 5.0 mg) was administered 48 hr after estrogen priming. The lordosis quotient (LQ) and lordosis score (LS) were assessed 4 hr after RU 486 administration in a standardized test consisting of a 10-mount test by a stimulus male. A significant dose effect was found by both LQ and LS, with those subjects receiving 5 mg of RU 486 being significantly more receptive than vehicle control animals. Thus RU 486 acted as a weak progestin agonist under testing conditions typical for assessment of progestin facilitation of female sexual behavior in rats. Low levels of proceptive behavior (hops and darts) were seen in a minority of the tests, and did not vary systematically as a function of the dose of RU 486 administered. We also examined the effects of RU 486 given before progesterone (P) on receptivity in a blocking paradigm and confirmed previous reports that the antagonist significantly attenuates facilitation of sexual behavior when given in combination with P. A progestin receptor assay of the cytosols of the hypothalamus-preoptic area in estrogen-primed female rats treated with 5 mg RU 486 revealed a significantly greater depletion of available cytosolic P receptors than when rats were treated with a similarly facilitating dose of P (100 micrograms). The results suggest a possible dual mode of action for RU 486--a weak, receptor-mediated agonistic effect on sexual behavior when given alone to estrogen-primed rats, and a competitive blocking effect on receptivity when administered with P.  相似文献   

18.
These experiments were designed to investigate the role of neuronal protein synthesis in the hormonal activation of female sexual behavior using intracranial implants of the protein synthesis inhibitor, anisomycin. In the first experiment, female rats receiving bilateral cannulae implants in the medial preoptic area (POA), septal region (SEPT), ventromedial hypothalamus (VMH), or midbrain central gray (CG) were injected with 2.5 micrograms estradiol benzoate (EB), followed 48 hr later by 500 micrograms progesterone (P). Females receiving anisomycin in the VMH at the time of EB injection had lower levels of lordosis and darting compared to tests without anisomycin. Sexual behavior was unaffected in females receiving anisomycin implants in the POA, SEPT, or CG. In a second experiment, we replicated the finding that anisomycin could attenuate lordotic responsivity when placed in the VMH of female rats injected with 2.5 micrograms EB and 500 micrograms P. In addition, we found that POA implants of anisomycin could facilitate lordosis in females given a low dose of EB (1.25 microgram) plus 500 micrograms P. In a third experiment, we assessed the effects of anisomycin application to the VMH or POA of female rats receiving estradiol (E; diluted 1:250 with cholesterol) implants in the VMH and systemic P. Treatment of the VMH with anisomycin prior to E in the VMH suppressed lordotic responding, whereas anisomycin application to the POA prior to E in the VMH had no effect on lordosis. The results of these experiments suggest that reducing protein synthesis in the region of the VMH disrupts the action of estrogen on the VMH, and that the facilitative action of anisomycin in the POA of female rats requires more estrogen treatment than threshold stimulation of the VMH alone.  相似文献   

19.
The purpose of this study was to examine the effects of neonatally placed septal lesions (SL) in male, female, and androgenized female rats on reproductive behavior. Animals were castrated as adults and tested for both feminine and masculine sexual behavior. After treatment with estradiol benzoate (EB) alone (2 μg daily for 3 days), only the females with SL which had not been given testosterone propionate (TP) neonatally showed a facilitation of lordosis behavior. Following EB (2 μg for 3 days) plus 0.5 mg progesterone (P), both the lesioned and the sham-operated female groups showed an increase in the display of lordosis in either hormonal condition. All animals were given a pretest for masculine sexual behavior and tested on Days 4, 7, 11, and 15 of daily TP treatment (150 μg/day). There was no effect of the neonatally placed SL on masculine sexual behavior in female rats or in female rats androgenized with 30 μg TP. However, lesioned females treated neonatally with 1 mg TP showed a marginal enhancement of masculine sexual behavior. Male rats given SL neonatally showed a marked enhancement of masculine sexual behavior compared to that of controls. These results suggest that, depending on the neonatal hormone environment, SL selectively increase behavioral sensitivity to hormones. Although neonatally lesioned females show behavioral responses similar to females given SL as adults, male rats given SL neonatally are unique in that they show enhanced masculine sexual behavior whereas males lesioned as adults do not.  相似文献   

20.
Cycloheximide(Cyclo), an inhibitor of protein synthesis by a direct action on protein synthesis at the ribosomal level, was used to reversibly inhibit estrogen-induced sexual receptivity. Cyclo (100 μg per rat) was infused into the preoptic area(POA) of ovariectomized rats at varying times before, simultaneously with, and after 3 μg of subcutaneous estradiol benzoate (EB). All animals received 0.5 mg progesterone (P) 36 hr after EB, and were tested for sexual receptivity 4–6 hr after P. The females were placed with stud males and a lordosis quotient was computed for each female (lordosis quotient = number of lordosis responses/20 mounts by the male × 100). Females receiving Cyclo 6 hr before, simultaneously with, or 12 hr after EB showed significantly lower levels of sexual receptivity when compared to females receiving Cyclo 36 hr before and 18 and 24 hr after EB. When those animals that showed low levels of sexual behavior after Cyclo infusion were reprimed with EB and P 7 days later and presented with a male they showed high levels of sexual receptivity. Thus, the effect of Cyclo was reversible. Only Cyclo infusions into the POA (bilateral) and third ventricle were effective in suppressing sexual behavior. Caudate nucleus, lateral ventricle, and unilateral POA infusions were without effect.The data presented are in agreement with earlier work that utilized actinomycin D to inhibit steroid-induced sexual behavior. Cyclo was found to be less toxic than actinomycin D. All of the available evidence is consistent with the hypothesis that estrogen stimulates RNA and/or protein synthesis in its facilitation of sexual behavior in the female rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号