首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular and extracellular recordings were performed in the posterior ventral nerve cord of restrained crawling preparations of the medicinal leech,Hirudo medicinalis. Short-latency neuronal activities in the tail ganglion nerves correlated with different phases of crawling behavior. Eight neurons with characteristic activation patterns during crawling were identified morphologically and physiologically in the tail ganglia of 23 preparations. The axons of four of these neurons projected through posterior tail brain nerves; four ascending interneurons had projections in the connectives or in Faivre's nerve. These interneurons are suitable candidates for carrying information between the front end and the tail end of the animal to coordinate the behavioral components during a crawling step.  相似文献   

2.
Higher-order projection interneurons that function in more than one behavior have been identified in a number of preparations. In this study, we document that stimulation of cell Tr1, a previously identified trigger interneuron for swimming in the medicinal leech, can also elicit the motor program for crawling in isolated nerve cords. We also show that motor choice is independent of the firing frequency of Tr1 and amount of spiking activity recorded extracellularly at three locations along the ventral nerve cord prior to Tr1 stimulation. On the other hand, during Tr1 stimulation there is a significant difference in the amount of activity elicited in the ventral nerve cord that correlates with the motor program activated. On average, Tr1 stimulation trials that lead to crawling elicit greater amounts of activity than in trials that lead to swimming.  相似文献   

3.
Changes in the behavior of crawling leeches were investigated after various kinds of manipulations, including selective transection or inactivation of body parts, as well as partial or complete transection of the central nerve cord, using a frame-by-frame analysis of video tapes of the crawling animals. From these studies, we found that: 1. Leeches made rhythmic crawling cycles even after their suckers were prevented from contacting the substrate by covering them over with glue. Hence, engagement and disengagement of the suckers are not necessary links in the crawling cycle. 2. Cutting the small, medial connective (Faivre's nerve) had no influence on crawling, but contraction during the whole-body shortening reflex was interrupted. Thus two behaviors which use the same motor output (i.e., whole-body shortening and the contraction phase of crawling) are mediated by two different pathways. 3. Cutting all the connectives between two ganglia in the middle of the leech resulted in a loss of coordination between the parts of the animal on either side of the cut. Therefore, temporally coordinated sucker activity must be mediated through these connectives. 4. Pieces of leech bodies produced by complete transection produced rhythmic crawling cycles as long as the pieces included the head or tail plus 2–4 adjacent midbody segments. In all cases, the crawling movements progressed without delays as the movements reached the cut ends. Pieces of animals that included only midbody segments did not produce crawling movements. 5. These results can be explained by a model composed of intersegmental pathways for both elongation and contraction, circuits in the head and tail brains that switch between elongation and contraction, and both ascending and descending inhibitory influences that determine when the cycle switches from elongation to contraction and back again.Abbreviations C1-C7 caudal segments 1 through 7 (comprise the tail sucker) - Circ. circular muscle(s) - CD circular element driver - CPG central pattern generator - ED elongation element driver - El elongation - El init initiation of elongation - FN Faivre's nerve - fs + front sucker attachment - s— front sucker release - Long longitudinal muscle(s) - M1-M21 midbody segments 1 through 21 - R1-R4 rostral segments 1 through 4 (comprise the head) - rs + rear sucker attachment - rs rear sucker release - Sens sensory input - SR stretch receptors(s) - ti tonic inhibition  相似文献   

4.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

5.
The aim of this study was to identify neurons in the subesophageal ganglion of the medicinal leech which initiate swimming activity and to determine their output connections. We found two bilaterally symmetrical pairs of interneurons, Tr1 and Tr2, located in the first division of the subesophageal ganglion which initiate swimming activity in the isolated nervous system when depolarized with brief (1-3 s) current pulses. Tr1 and Tr2 are considered trigger neurons because elicited swimming episodes outlast the stimulus duration, and because the length of elicited swim episodes is nearly independent of the intensity with which Tr1 and Tr2 are stimulated. Tr1 and Tr2 have similar morphologies. The neurites of both cells cross contralaterally in the subesophageal ganglion, project posteriorly, and exit the subesophageal ganglion in the contralateral connective. The axons of Tr1 and Tr2 extend as far posterior as segmental ganglion 18 of the ventral nerve cord. Tr1 provides direct excitatory drive to three groups of segmental neurons which are capable of initiating swimming: swim-initiating interneurons (cells 204 and 205), serotonin-containing interneurons (cells 61 and 21), and the serotonergic Retzius cells. In addition, all Retzius cells in the subesophageal ganglion are excited directly by Tr1. These three groups of neurons are excited even if Tr1 stimulation is subthreshold for swim initiation. In contrast to Tr1, Tr2 stimulation evokes transient inhibition in swim-initiating and serotonin-containing interneurons, and has little immediate effect on Retzius cells. In addition, Tr2 indirectly inhibits several oscillator neurons, including cells 208, 33, and 60. When Tr1 is stimulated during a swimming episode the swim period decreases for several cycles, while stimulation of Tr2 during swimming episodes reliably resets the ongoing swimming rhythm. Our findings indicate that Tr1 and Tr2 are trigger neurons which initiate swimming activity by different pathways. These neurons also have functional interactions with the swim oscillator network since either Tr1 or Tr2 stimulation during swimming can modulate the ongoing swimming rhythm.  相似文献   

6.
In papers I and II of this series, we described two pairs of interneurons, Tr1 and Tr2, in the leech subesophageal ganglion which can trigger swimming activity in the isolated central nervous system (CNS). In this paper, we describe sensory inputs to these trigger neurons from previously identified mechanosensory neurons. We found that: Weak mechanical stimulation (stroking) of a body wall flap attached to a segmental ganglion in an otherwise isolated CNS excites the contralateral Tr1 slightly. Strong mechanical stimulation (pinching) of a mid-body wall flap evokes a burst of impulses in the contralateral Tr1. For both means of stimulation the effects on the ipsilateral Tr1 and on the Tr2 cell pair were much weaker. Stroking a body wall flap attached to the head ganglion (supra- and subesophageal ganglia) in an otherwise isolated CNS excites both Tr1s and both Tr2s, although the effect is weaker for the Tr2s. Pinching strongly excites both trigger neurons bilaterally. Pressure and nociceptive mechanosensory neurons (P and N cells) in the subesophageal ganglion and the first segmental ganglion appear to make direct excitatory synapses with the contralateral Tr1 and Tr2. Mechanosensory interactions with the ipsilateral trigger neurons appear to be indirect. Functional inactivation of Tr1 by hyperpolarization does not prevent swim initiation either by weak mechanical stimulation of a body-wall flap or by intracellular stimulation of P cells.2+ We conclude that the trigger neurons, Tr1 and Tr2, provide an excitatory pathway by which mechanosensory stimulation can initiate leech swimming activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Although the neuronal circuits that generate leech movements have been studied for over 30 years, the list of interneurons (INs) in these circuits remains incomplete. Previous studies showed that some motor neurons (MNs) are electrically coupled to swim-related INs, e.g., rectifying junctions connect IN 28 to MN DI-1 (dorsal inhibitor), so we searched for additional neurons in these behavioral circuits by co-injecting Neurobiotin and Alexa Fluor 488 into segmental MNs DI–1, VI–2, DE–3 and VE–4. The high molecular weight Alexa dye is confined to the injected cell, whereas the smaller Neurobiotin molecules diffuse through gap junctions to reveal electrical coupling. We found that MNs were each dye-coupled to approximately 25 neurons, about half of which are likely to be INs. We also found that (1) dye-coupling was reliably correlated with physiologically confirmed electrical connections, (2) dye-coupling is unidirectional between MNs that are linked by rectifying connections, and (3) there are novel electrical connections between excitatory and inhibitory MNs, e.g. between excitatory MN VE-4 and inhibitory MN DI-1. The INs found in this study provide a pool of novel candidate neurons for future studies of behavioral circuits, including those underlying swimming, crawling, shortening, and bending movements.  相似文献   

8.
The locomotory kinematics of Chironomus plumosus larvae and pupae were investigated in order to determine how different locomotory techniques may be related to (a) possible underlying patterns of muscle activation and (b) the particular lifestyles and behaviours of these juvenile stages. Larvae display three independent modes of motile activity: swimming, crawling and whole-body respiratory undulation. Swimming and respiratory undulation involve the use of metachronal waves of body bending which travel in a head-to-tail direction. Whereas swimming is produced by side-to-side flexures of the whole body, respiratory undulation employs a sinusoidal wave. Crawling appears to result from an independent programme of muscle activation. Instead of a longitudinally transmitting metachronal wave of body flexure, a simultaneous arching of the body, combined with the alternating use of the abdominal and prothoracic pseudopods as anchorage points, produces a form of locomotion analogous to caterpillar-looping. Larval swimming has a set speed and rhythm and is an 'all-or-nothing' locomotory manoeuvre, but the neural programme controlling larval crawling is adaptable; switching from a less to a more slippery substrate resulted in a shorter, faster stepping pattern. The pupa displays two swimming modes, somersaulting and eel-like whole-body undulation, the former being principally a brief, escape manoeuvre, the latter being a faster form of locomotion employed to deliver the pupa to the surface prior to adult emergence. Comparison with the pupa of the culicid Culex pipiens shows that this insect also uses the somersault mechanism but at a higher cycle frequency which produces a faster swimming speed. This appears to be related to differences in lifestyle; the surface-living culicid pupa is exposed to greater predator threat than the bottom-dwelling chironomid pupa, and consequently needs a faster escape.  相似文献   

9.
The medicinal leech crawls along a solid substrate by repeated alternating extensions and shortenings of the body. Extension occurs with the posterior sucker attached and the head sucker free. The head sucker then attaches, followed by shortening and release of the tail sucker. The tail sucker is then pulled toward the head, where it reattaches to the substrate. The head sucker then releases, and another crawling cycle begins (Figs. 1, 5). There are two crawling variants: inchworm crawling, in which the head and tail suckers are closely apposed at the end of a cycle and the body forms a loop above the substrate, and vermiform crawling, in which the suckers are placed farther apart and the body remains fairly close to the substrate (Fig. 1). The cycle period and the distance traveled during a cycle are greater in inchworm than in vermiform crawling; however, the velocity of travel is the same for both (Fig. 2). For both variants, the interval between head sucker attachment and tail sucker release is similar at all cycle periods and has a value consistent with direct interneuronal conduction of a signal from head sucker sensory neurons to tail sucker motor neurons. The interval between tail sucker attachment and head sucker release, however, is longer and varies with the cycle period, suggesting a more complex interneuronal circuit in the pathway from tail sucker sensory neurons to head sucker motor neurons (Fig. 4). The onsets of the components of the crawling cycle (extension, post-extension pause, shortening, and post-shortening pause) show an anteroposterior lag (Figs. 5, 7). For both variants, the travel time between segments varies directly with the period (Fig. 8). For both crawl types, the durations of the cycle components vary directly with the period, with several exceptions (Figs. 9, 10). A model is presented that summarizes the coordination of the various motor events in a cycle of leech crawling (Figs. 11 and 12).  相似文献   

10.
Homologues of a neuron that contributes to a species-specific behavior were identified and characterized in species lacking that behavior. The nudibranch Tritonia diomedea swims by flexing its body dorsally and ventrally. The dorsal swim interneurons (DSIs) are components of the central pattern generator (CPG) underlying this rhythmic motor pattern and also activate crawling. Homologues of the DSIs were identified in six nudibranchs that do not exhibit dorsal–ventral swimming: Tochuina tetraquetra, Melibe leonina, Dendronotus iris, D. frondosus, Armina californica, and Triopha catalinae. Homology was based upon shared features that distinguish the DSIs from all other neurons: (1) serotonin immunoreactivity, (2) location in the Cerebral serotonergic posterior (CeSP) cluster, and (3) axon projection to the contralateral pedal ganglion. The DSI homologues, named CeSP-A neurons, share additional features with the DSIs: irregular basal firing, synchronous inputs, electrical coupling, and reciprocal inhibition. Unlike the DSIs, the CeSP-A neurons were not rhythmically active in response to nerve stimulation. The CeSP-A neurons in Tochuina and Triopha also excited homologues of the Tritonia Pd5 neuron, a crawling efferent. Thus, the CeSP-A neurons and the DSIs may be part of a conserved network related to crawling that may have been co-opted into a rhythmic swim CPG in Tritonia. This material is based upon work supported by the National Science Foundation, under Grant No. 0445768, and a GSU Research Program Enhancement grant to PSK.  相似文献   

11.
The neuronal circuits that generate the leech swimming rhythm comprise oscillatory interneurons that provide appropriately phased output to drive swim-related motoneurons. Within ganglia, these interneurons express three phases; between ganglia there exists a phase delay between homologs. Our earlier experiments revealed that stretch receptors embedded in the body wall participate in intersegmental coordination and setting intersegmental phases. To identify the basis for these sensory effects, we mapped interactions between a ventral stretch receptor and swim-related neurons. Connections between this receptor and motoneurons are weak and variable in quiescent preparations, but during fictive swimming stretch receptor activation modulates motoneuron oscillations, hence, these effects are polysynaptic, mediated by interneurons. We identified a strong, nonrectifying, and apparently direct electrical connection between the stretch receptor and oscillator neuron 33. The ventral stretch receptor also interacts with most of the other oscillatory interneurons, including inhibitory inputs to cells 28 and 208, excitatory input to the contralateral cell 115, and mixed input to the ipsilateral cell 115. These direct and indirect interactions can account for previously described effects of body-wall stretch on motoneuron activity. They also could mediate the previously described modification of intersegmental phase relationships by appropriately phased stretch receptor activation.  相似文献   

12.
The leech whole-body shortening reflex consists of a rapid contraction of the body elicited by a mechanical stimulus to the anterior of the animal. We used a variety of reduced preparations — semi-intact, body wall, and isolated nerve cord — to begin to elucidate the neural basis of this reflex in the medicinal leech Hirudo medicinalis. The motor pattern of the reflex involved an activation of excitatory motor neurons innervating dorsal and ventral longitudinal muscles (dorsal excitors and ventral excitors respectively), as well as the L cell, a motor neuron innervating both dorsal and ventral longitudinal muscles. The sensory input for the reflex was provided primarily by the T (touch) and P (pressure) types of identified mechanosensory neuron. The S cell network, a set of electrically-coupled interneurons which makes up a fast conducting pathway in the leech nerve cord, was active during shortening and accounted for the shortest-latency excitation of the L cells. Other, parallel, interneuronal pathways contributed to shortening as well. The whole-body shortening reflex was shown to be distinct from the previously described local shortening behavior of the leech in its sensory threshold, motor pattern, and (at least partially) in its interneuronal basis.Abbreviations conn connective - DE dorsal excitor motor neuron - DI dorsal inhibitor motor neuron - DP dorsal posterior nerve - DP:B1 dorsal posterior nerve branch 1 - DP:B2 dorsal posterior nerve branch 2 - MG midbody ganglion - VE ventral excitor motor neuron - VI ventral inhibitor motor neuron  相似文献   

13.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

14.
Rhythmic animal movements originate in CNS oscillator circuits; however, sensory inputs play an important role in shaping motor output. Our recent studies demonstrated that leeches with severed nerve cords swim with excellent coordination between the two ends, indicating that sensory inputs are sufficient for maintaining intersegmental coordination. In this study, we examined the neuronal substrates that underlie intersegmental coordination via sensory mechanisms. Among the identified sensory neurons in the leech, we found the ventral stretch receptor (VSR) to be the best candidate for our study because of its sensitivity to tension in longitudinal muscle. Our experiments demonstrate that (1) the membrane potential of the VSR is depolarized during swimming and oscillates with an amplitude of 1.5–5.0 mV, (2) rhythmic currents injected into the VSR can entrain ongoing swimming over a large frequency range (0.9–1.8 Hz), and (3) large current pulses injected into the VSR shift the phase of the swimming rhythm. These results suggest that VSRs play an important role in generating and modulating the swim rhythm. We propose that coordinated swimming in leech preparations with severed nerve cords results from mutual entrainment between the two ends of the leech mediated by stretch receptors.  相似文献   

15.
Summary This paper describes newly identified excitatory connections linking the segmentally iterated swim-initiator interneurons with the network of oscillator neurons that generates the leech swimming rhythm. Apparently monosynaptic excitatory chemical connections are made from one class of swim-initiator neurons (cells 204/205) to several members of the swim oscillator network, including cells 28, 115 and, as described by Weeks (1982c), cell 208. A second class of swim-initiator neurons, cells 21 and 61, also excites this subset of the oscillator neurons.The unpaired swim oscillator neuron, cell 208, also chemically excites cells 28 and 115, apparently directly. Thus, in addition to its role as a member of the swim oscillator, the excitatory output from cell 208 to the swim oscillator adds to that provided by the swim-initiator neurons.The results of this paper enlarge the subset of identified swim oscillator neurons synaptically excited by the swim-initiator neurons. These newly described targets of the swim-initiators strengthen the hypotheses that: 1) the swim-initiator neurons supply much of the tonic excitatory drive responsible for activation and maintenance of the swim central motor program, and 2) the two classes of swim-initiators, cells 204/205 and cells 21/61, act synergistically to initiate and maintain swimming.Abbreviations EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - CNS central nervous system  相似文献   

16.
The rhythmic pumping of the hearts in the medicinal leech,Hirudo medicinalis, is neurogenic and mediated by a defined circuit involving identified interneurons in a central pattern generator (CPG) and segmentally iterated motor neurons that drive the heart muscle. During early embryogenesis, presumptive heart excitor (HE) motor neurons extend many axon branches into the body wall; they later innervate the heart while retracting the supernumerary peripheral axons, and only much later in development receive synaptic input from the central pattern generator (Jellies, Kopp and Bledsoe (1992)J. Exp. Biol., 170, 71–92.)- In this study, HE motor neurons were deprived of an early interaction with the heart by surgical ablation of a circumscribed portion of body wall including the heart primordium. Anatomical and electrophysiological data were obtained using intracellular techniques to examine the hypothesis that peripheral interactions with the developing heart provide instructive cues for the final differentiation of these neurons. Target-deprived HE motor neurons continued to extend multiple axons in ventral, lateral and dorsal body wall throughout late embryonic and into postembryonic stages and they extended anomalous axons within the CNS. This resembles the early embryonic growth of HE motor neurons before heart tube differentiation. Furthermore, HE motor neurons deprived of heart contact exhibited tonic activity similar to the situation during early development before they are contacted by the CPG interneurons. In contrast, sham-operated and contralateral HE motor neurons oscillated normally. These results suggest that heart tube contact is specifically required for at least some aspects of HE development and provide a framework in which to identify cell-cell interactions that are involved in matching neurons and targets to generate behaviorally relevant neural circuits.  相似文献   

17.
Postinhibitory rebound (PIR) is defined as membrane depolarization occurring at the offset of a hyperpolarizing stimulus and is one of several intrinsic properties that may promote rhythmic electrical activity. PIR can be produced by several mechanisms including hyperpolarization-activated cation current (Ih) or deinactivation of depolarization-activated inward currents. Excitatory swim motor neurons in the leech exhibit PIR in response to injected current pulses or inhibitory synaptic input. Serotonin, a potent modulator of leech swimming behavior, increases the peak amplitude of PIR and decreases its duration, effects consistent with supporting rhythmic activity. In this study, we performed current clamp experiments on dorsal excitatory cell 3 (DE-3) and ventral excitatory cell 4 (VE-4). We found a significant difference in the shape of PIR responses expressed by these two cell types in normal saline, with DE-3 exhibiting a larger prolonged component. Exposing motor neurons to serotonin eliminated this difference. Cs+ had no effect on PIR, suggesting that Ih plays no role. PIR was suppressed completely when low Na+ solution was combined with Ca2+ -channel blockers. Our data support the hypothesis that PIR in swim motor neurons is produced by a combination of low-threshold Na+ and Ca2+ currents that begin to activate near –60 mV.  相似文献   

18.
The body wall muscles of sanguivorous leeches power mechanically diverse behaviours: suction feeding, crawling and swimming. These require longitudinal muscle to exert force over an extremely large length range, from 145 to 46 per cent of the mean segmental swimming length. Previous data, however, suggest that leech body wall muscle has limited capacity for force production when elongated. Serotonin (5-HT) alters the passive properties of the body wall and stimulates feeding. We hypothesized that 5-HT may also have a role in allowing force production in elongated muscle by changing the shape of the length-tension relationship (LTR). LTRs were measured from longitudinal muscle strips in vitro in physiological saline with and without the presence of 10 μM 5-HT. The LTR was much broader than previously measured for leech muscle. Rather than shifting the LTR, 5-HT reduced passive muscle tonus and increased active stress at all lengths. In addition to modulating leech behaviour and passive mechanical properties, 5-HT probably enhances muscle force and work production during locomotion and feeding.  相似文献   

19.
An oscillatory intersegmental neuronal network drives the swimming rhythm of the leech. This network consists of interneurons joined via inhibitory connections to form a series of segmentally iterated, concatenated rings. Recurrent cyclic inhibition in these rings produces a multiphasic activity rhythm. By theoretical analysis of such concatenated interneuronal rings and construction of their electronic analogs it is shown that the interneural network identified in the central nervous system of the leech has properties appropriate for generating the observed motor output.  相似文献   

20.
We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillator interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike-mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance-based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号