首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE/ADAM-17) is responsible for the release of TNF-alpha, a potent proinflammatory cytokine associated with many chronic debilitating diseases such as rheumatoid arthritis. Among the four variants of mammalian tissue inhibitor of metalloproteinases (TIMP-1 to -4), TACE is specifically inhibited by TIMP-3. We set out to delineate the basis for this specificity by examining the solvent accessibility of every epitope on the surface of a model of the truncated N-terminal domain form of TIMP-3 (N-TIMP-3) in a hypothetical complex with the crystal structure of TACE. The epitopes suspected of interacting with TACE were systematically transplanted onto N-TIMP-1. We succeeded in transforming N-TIMP-1 into an active inhibitor for TACE (K(i)(app) 15 nM) with the incorporation of Ser4, Leu67, Arg84, and the TIMP-3 AB-loop. The combined effects of these epitopes are additive. Unexpectedly, introduction of "super-N-TIMP-3" epitopes, defined in our previous work, only impaired the affinity of N-TIMP-1 for TACE. Our mutagenesis results indicate that TIMP-3-TACE interaction is a delicate process that requires highly refined surface topography and flexibility from both parties. Most importantly, our findings confirm that the individual characteristics of TIMP could be transplanted from one variant to another.  相似文献   

2.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

3.
Catalytic properties of ADAM12 and its domain deletion mutants   总被引:1,自引:0,他引:1  
Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.  相似文献   

4.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

5.
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.  相似文献   

6.
Atrolysin C is a P-I snake venom metalloproteinase (SVMP) from Crotalus atrox venom, which efficiently degrades capillary basement membranes, extracellular matrix, and cell surface proteins to produce hemorrhage. The tissue inhibitors of metalloproteinases (TIMPs) are effective inhibitors of matrix metalloproteinases which share some structural similarity with the SVMPs. In this work, we evaluated the inhibitory profile of TIMP-1, TIMP-2, and the N-terminal domain of TIMP-3 (N-TIMP-3) on the proteolytic activity of atrolysin C and analyzed the structural requirements and molecular basis of inhibitor-enzyme interaction using molecular modeling. While TIMP-1 and TIMP-2 had no inhibitory activity upon atrolysin C, the N-terminal domain of TIMP-3 (N-TIMP-3) was a potent inhibitor with a K(i) value of approximately 150nM. The predicted docking structures of atrolysin C and TIMPs were submitted to molecular dynamics simulations and the complex atrolysin C/N-TIMP-3 was the only one that maintained the inhibitory conformation. This study is the first to shed light on the structural determinants required for the interaction between a SVMP and a TIMP, and suggests a structural basis for TIMP-3 inhibitory action and related proteins such as the ADAMs.  相似文献   

7.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

8.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

9.
The Staphylococcus aureus transpeptidase Sortase A (SrtA) anchors virulence and colonization-associated surface proteins to the cell wall. SrtA selectively recognizes a C-terminal LPXTG motif, whereas the related transpeptidase Sortase B (SrtB) recognizes a C-terminal NPQTN motif. In both enzymes, cleavage occurs after the conserved threonine, followed by amide bond formation between threonine and the pentaglycine cross-bridge of cell wall peptidoglycan. Genetic and biochemical studies strongly suggest that SrtA and SrtB exhibit exquisite specificity for their recognition motifs. To better understand the origins of substrate specificity within these two isoforms, we used sequence and structural analysis to predict residues and domains likely to be involved in conferring substrate specificity. Mutational analyses and domain swapping experiments were conducted to test their function in substrate recognition and specificity. Marked changes in the specificity profile of SrtA were obtained by replacing the beta6/beta7 loop in SrtA with the corresponding domain from SrtB. The chimeric beta6/beta7 loop swap enzyme (SrtLS) conferred the ability to acylate NPQTN-containing substrates, with a k(cat)/K(m)(app) of 0.0062 +/- 0.003 m(-1) s(-1). This enzyme was unable to perform the transpeptidation stage of the reaction, suggesting that additional domains are required for transpeptidation to occur. The overall catalytic specificity profile (k(cat)/K(m)(app)(NPQTN)/k(cat)/K(m)(app)(LPETG)) of SrtLS was altered 700,000-fold from SrtA. These results indicate that the beta6/beta7 loop is an important site for substrate recognition in sortases.  相似文献   

10.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

11.
Multifunctionality of tissue inhibitor of metalloproteinases-1 (TIMP-1) comprising antiproteolytic as well as cytokinic activity has been attributed to its N-terminal and C-terminal domains, respectively. The molecular basis of the emerging proinflammatory cytokinic activity of TIMP-1 is still not completely understood. The cytokine receptor invariant chain (CD74) is involved in many inflammation-associated diseases and is highly expressed by immune cells. CD74 triggers zeta chain–associated protein kinase-70 (ZAP-70) signaling–associated activation upon interaction with its only known ligand, the macrophage migration inhibitory factor. Here, we demonstrate TIMP-1–CD74 interaction by coimmunoprecipitation and confocal microscopy in cells engineered to overexpress CD74. In silico docking in HADDOCK predicted regions of the N-terminal domain of TIMP-1 (N-TIMP-1) to interact with CD74. This was experimentally confirmed by confocal microscopy demonstrating that recombinant N-TIMP-1 lacking the entire C-terminal domain was sufficient to bind CD74. Interaction of TIMP-1 with endogenously expressed CD74 was demonstrated in the Namalwa B lymphoma cell line by dot blot binding assays as well as confocal microscopy. Functionally, we demonstrated that TIMP-1–CD74 interaction triggered intracellular ZAP-70 activation. N-TIMP-1 was sufficient to induce ZAP-70 activation and interference with the cytokine-binding site of CD74 using a synthetic peptide–abrogated TIMP-1-mediated ZAP-70 activation. Altogether, we here identified CD74 as a receptor and mediator of cytokinic TIMP-1 activity and revealed TIMP-1 as moonlighting protein harboring both cytokinic and antiproteolytic activity within its N-terminal domain. Recognition of this functional TIMP-1–CD74 interaction may shed new light on clinical attempts to therapeutically target ligand-induced CD74 activity in cancer and other inflammatory diseases.  相似文献   

12.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (a disintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four variants of TIMPs, and each has its defined set of metalloproteinase (MP) targets. TIMP-1, in particular, is inactive against several of the membrane-type MMPs (MT-MMPs), MMP-19, and the ADAM proteinase TACE (tumor necrosis factor-alpha-converting enzyme, ADAM-17). The molecular basis for such inactivity is unknown. Previously, we showed that TIMP-1 could be transformed into an active inhibitor against MT1-MMP by the replacement of threonine 98 residue with leucine (T98L). Here, we reveal that the T98L mutation has in fact transformed TIMP-1 into a versatile inhibitor against an array of MPs otherwise insensitive to wild-type TIMP-1; examples include TACE, MMP-19, and MT5-MMP. Using T98L as the scaffold, we created a TIMP-1 variant that is fully active against TACE. The binding affinity of the mutant (V4S/TIMP-3-AB-loop/V69L/T98L) (K (app)(i) 0.14 nm) surpassed that of TIMP-3 (K (app)(i) 0.22 nm), the only natural TIMP inhibitor of the enzyme. The requirement for leucine is absolute for the transformation in inhibitory pattern. On the other hand, the mutation has minimal impact on the MPs already well inhibited by wild-type TIMP-1, such as gelatinase-A and stromelysin-1. Not only have we unlocked the molecular basis for the inactivity of TIMP-1 against several of the MPs, but also our findings fundamentally modify the current beliefs on the molecular mechanism of TIMP-MP recognition and selectivity.  相似文献   

13.
The avid binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is crucial for the regulation of pericellular and extracellular proteolysis. The interactions of the catalytic domain (cd) of MMP-1 with the inhibitory domains of TIMP-1 and TIMP-2 (N-TIMPs) and MMP-3cd with N-TIMP-2 have been characterized by isothermal titration calorimetry and compared with published data for the N-TIMP-1/MMP-3cd interaction. All interactions are largely driven by increases in entropy but there are significant differences in the profiles for the interactions of both N-TIMPs with MMP-1cd as compared with MMP-3cd; the enthalpy change ranges from small for MMP-1cd to highly unfavorable for MMP-3cd (-0.1 ± 0.7 versus 6.0 ± 0.5 kcal mol(-1)). The heat capacity change (ΔC(p)) of binding to MMP-1cd (temperature dependence of ΔH) is large and negative (-210 ± 20 cal K(-1) mol(-1)), indicating a large hydrophobic contribution, whereas the ΔC(p) values for the binding to MMP-3cd are much smaller (-53 ± 3 cal K(-1) mol(-1)), and some of the entropy increase may arise from increased conformational entropy. Apart from differences in ionization effects, it appears that the properties of the MMP may have a predominant influence in the thermodynamic profiles for these N-TIMP/MMP interactions.  相似文献   

14.
In addition to its catalytic domain, phosphoinsositide-dependent protein kinase-1 (PDK1) contains a C-terminal pleckstrin homology (PH) domain, which binds the membrane-bound phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P3] second messenger. Here, we report in vitro kinetic, phosphopeptide mapping, and oligomerization studies that address the role of the PH domain in regulating specific autophosphorylation events, which are required for PDK1 catalytic activation. First, 'inactive' unphosphorylated forms of N-terminal His6 tagged full length (His6-PDK1) and catalytic domain constructs [His6-PDK1(Delta PH)] were generated by treatment with Lambda protein phosphatase (lambda PP). Reconstitution of lambda PP-treated His6-PDK1(Delta PH) catalytic activity required activation loop Ser-241 phosphorylation, which occurred only upon trans-addition of 'active' PDK1 with an apparent bimolecular rate constant of (app)k1(S241) = 374+/-29 M(-1) s(-1). In contrast, full length lambda PP-treated His6-PDK1 catalyzed Ser-241 cis-autophosphorylation with an apparent first-order rate constant of (app)k1(S241) = (5.0+/-1.5) x 10(-4) s(-1) but remained 'inactive'. Reconstitution of lambda PP-treated His(6)-PDK1 catalytic activity occurred only when autophosphorylated in the presence of PI(3,4,5)P3 containing vesicles. PI(3,4,5)P3 binding to the PH domain activated apparent first-order Ser-241 autophosphorylation by 20-fold [(app)k1(S241) = (1.1+/-0.1) x 10(-2) s(-1)] and also promoted biphasic Thr-513 trans-autophosphorylation [(app)k2(T513) = (4.9+/-1.1) x 10(2) M(-1) s(-1) and(app)k3(T513) = (1.5+/-0.2) x 10(3) M(-1) s(-1)]. The results of mutagenesis studies suggest that Thr-513 phosphorylation may cause dissociation of autoinhibitory contacts formed between the contiguous regulatory PH and catalytic kinase domains.  相似文献   

15.
TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-α converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 Å resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.  相似文献   

16.
During iron acquisition by the cell, complete homodimeric transferrin receptor 1 in an unknown state (R1) binds iron-loaded human serum apotransferrin in an unknown state (T) and allows its internalization in the cytoplasm. T also forms complexes with metals other than iron. Are these metals incorporated by the iron acquisition pathway and how can other proteins interact with R1? We report here a four-step mechanism for cobalt(III) transfer from CoNtaCO(3)(2-) to T and analyze the interaction of cobalt-loaded transferrin with R1. The first step in cobalt uptake by T is a fast transfer of Co(3+) and CO(3)(2-) from CoNtaCO(3)(2-) to the metal-binding site in the C-lobe of T: direct rate constant, k(1)=(1.1+/-0.1) x 10(6) M(-1) s(-1); reverse rate constant, k(-1)=(1.9+/-0.6) x 10(6) M(-1) s(-1); and equilibrium constant, K=1.7+/-0.7. This step is followed by a proton-assisted conformational change of the C-lobe: direct rate constant, k(2)=(3+/-0.3) x 10(6) M(-1) s(-1); reverse rate constant, k(-2)=(1.6+/-0.3) x 10(-2) s(-1); and equilibrium constant, K(2a)=5.3+/-1.5 nM. The two final steps are slow changes in the conformation of the protein (0.5 h and 72 h), which allow it to achieve its final thermodynamic state and also to acquire second cobalt. The cobalt-saturated transferrin in an unknown state (TCo(2)) interacts with R1 in two different steps. The first is an ultra-fast interaction of the C-lobe of TCo(2) with the helical domain of R1: direct rate constant, k(3)=(4.4+/-0.6)x10(10) M(-1) s(-1); reverse rate constant, k(-3)=(3.6+/-0.6) x 10(4) s(-1); and dissociation constant, K(1d)=0.82+/-0.25 muM. The second is a very slow interaction of the N-lobe of TCo(2) with the protease-like domain of R1. This increases the stability of the protein-protein adduct by 30-fold with an average overall dissociation constant K(d)=25+/-10 nM. The main trigger in the R1-mediated iron acquisition is the ultra-fast interaction of the metal-loaded C-lobe of T with R1. This step is much faster than endocytosis, which in turn is much faster than the interaction of the N-lobe of T with the protease-like domain. This can explain why other metal-loaded transferrins or a protein such as HFE-with a lower affinity for R1 than iron-saturated transferrin but with, however, similar or higher affinities for the helical domain than the C-lobe-competes with iron-saturated transferrin in an unknown state towards interaction with R1.  相似文献   

17.
Inhibition of dipeptidyl peptidase IV (DPP-IV) has been proposed recently as a therapeutic approach to the treatment of type 2 diabetes. N-Substituted-glycyl-2-cyanopyrrolidide compounds, typified by NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S )-p yrrolidine), inhibit degradation of glucagon-like peptide-1 (GLP-1) and thereby potentiate insulin release in response to glucose-containing meals. In the present study NVP-DPP728 was found to inhibit human DPP-IV amidolytic activity with a K(i) of 11 nM, a k(on) value of 1.3 x 10(5) M(-)(1) s(-)(1), and a k(off) of 1.3 x 10(-)(3) s(-)(1). Purified bovine kidney DPP-IV bound 1 mol/mol [(14)C]-NVP-DPP728 with high affinity (12 nM K(d)). The dissociation constant, k(off), was 1.0 x 10(-)(3) and 1.6 x 10(-)(3) s(-)(1) in the presence of 0 and 200 microM H-Gly-Pro-AMC, respectively (dissociation t(1/2) approximately 10 min). Through kinetic evaluation of DPP-IV inhibition by the D-antipode, des-cyano, and amide analogues of NVP-DPP728, it was determined that the nitrile functionality at the 2-pyrrolidine position is required, in the L-configuration, for maximal activity (K(i) of 11 nM vs K(i) values of 5.6 to >300 microM for the other analogues tested). Surprisingly, it was found that the D-antipode, despite being approximately 500-fold less potent than NVP-DPP728, displayed identical dissociation kinetics (k(off) of 1.5 x 10(-)(3) s(-)(1)). NVP-DPP728 inhibited DPP-IV in a manner consistent with a two-step inhibition mechanism. Taken together, these data suggest that NVP-DPP728 inhibits DPP-IV through formation of a novel, reversible, nitrile-dependent complex with transition state characteristics.  相似文献   

18.
Aggrecanases are considered to play a key role in the destruction of articular cartilage during the progression of arthritis. Here we report that the N-terminal inhibitory domain of tissue inhibitor of metalloproteinases 3 (N-TIMP-3), but not TIMP-1 or TIMP-2, inhibits glycosaminoglycan release from bovine nasal and porcine articular cartilage explants stimulated with interleukin-1alpha or retinoic acid in a dose-dependent manner. This inhibition is due to the blocking of aggrecanase activity induced by the catabolic factors. Little apoptosis of primary porcine chondrocytes is observed at an effective concentration of N-TIMP-3. These results suggest that TIMP-3 may be a candidate agent for use against cartilage degradation.  相似文献   

19.
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop. This region in N-TIMP is known to be essential for inhibitory activity against the matrix metalloproteinases and suggests that this region is of equal importance for NTR PCOLCE1, although the specific functional activity of the NTR PCOLCE1 domain is still unknown. Dynamics observed within the structural core of NTR PCOLCE1 that are not observed in N-TIMP molecules suggest that although the two domains have a similar architecture, the NTR PCOLCE1 domain will show different thermodynamic properties on binding and hence the target molecule could be somewhat different from that observed for the TIMPs. ModelFree order parameters show that NTR PCOLCE1 has more flexibility than both N-TIMP-1 and N-TIMP-2.  相似文献   

20.
Muradov KG  Artemyev NO 《Biochemistry》2000,39(14):3937-3942
The N-terminal regions of the heterotrimeric G-protein alpha-subunits represent one of the major Gbetagamma contact sites and have been implicated in an interaction with G-protein-coupled receptors. To probe the role of the N-terminal domain of transducin-alpha in G-protein function, a chimeric Gtialpha subunit with the 31 N-terminal Gtalpha residues replaced by the corresponding 42 residues of Gsalpha (Ns-Gtialpha) has been examined for the interaction with light-activated rhodopsin (R). Gtialpha displayed a somewhat higher R-stimulated rate of GTPgammaS binding relative to Ns-Gtialpha, suggesting modest involvement of the Gtalpha N-terminal sequence in recognition of the receptor. However, the intrinsic rate of nucleotide exchange in Ns-Gtialpha was significantly faster (k(app) = 0.014 min(-)(1)) than that in Gtialpha (k(app) = 0.0013 min(-1)) as judged by the GTPgammaS binding rates. Substitution of 42 N-terminal residues of Gsalpha by the Gtalpha residues in a reciprocal chimera, Nt-Gsalpha, had an opposite effect-notable reduction in the intrinsic GTPgammaS-binding rate (k(app) = 0.0075 min(-)(1)) in comparison with Gsalpha (k(app) = 0.028 min(-)(1)). Residue Val30 (His41 in Gsalpha) within the N-terminal region of Gtalpha interacts with the C-terminal residue, Ile339. To test the hypothesis that observed changes in the intrinsic nucleotide exchange rate in chimeric Galpha subunits might be attributed to this interaction, GtialphaVal30His, GtialphaIle339Ala, and Ns-GtialphaHis41Val mutants have been made and analyzed for basal GTPgammaS binding. GtialphaVal30His and GtialphaIle339Ala had increased GTPgammaS binding rates (k(app) = 0. 010 and 0.009 min(-)(1), respectively), whereas Ns-GtialphaHis41Val had a decreased GTPgammaS binding rate (k(app) = 0.0011 min(-)(1)) relative to their parent proteins. These results suggest that the coupling between the N-terminal and C-terminal domains of Gtalpha is important for maintaining a low nucleotide exchange rate in unstimulated transducin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号