首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

2.
Traditional mycelium aging technology was improved to enhance arachidonic acid (ARA) production by Mortierella alpina ME-1. Filtration step was skipped and additional carbon and nitrogen sources were fed during aging. The levels of the significant factors (time, temperature, ethanol, and KNO3) affecting ARA production during improved aging process were also optimized by applying response surface methodology (RSM), and the maximum ARA yield of 19.02 g/l was achieved in a 5 l fermentor at 5.6 days, temperature 13.7 °C, ethanol 42.44 g/l, and KNO3 2.62 g/l. This yield was 1.55 times higher than that of traditional aging technology. The improved mycelium aging technology is considered to be a useful strategy for enhancing ARA production.  相似文献   

3.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

4.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

5.
The fermentation characteristics of 24 strains of Saccharomyces cerevisiae and one strain of Candida apicola, C. famata, C. guilliermondii, Hanseniospora occidentalis, Pichia subpelicullosa and Schizosaccharomyces pombe were evaluated for the production of cachaça. They were isolated from small cachaça distilleries (27), industrial cachaça distilleries (2) and one sugarcane alcohol distillery. The yeasts showed significant differences in ethanol yield, substrate conversion, efficiency, conversion factors of substrate into ethanol (Y p/s), cells (Y x/s), organic acids (Y ac/s) and glycerol (Y g/s), and maximum specific growth rate ( max). In general the S. cerevisiae strains showed better fermentation potential, with yields between 83 and 91% and max between 0.450 and 0.640 h–1, several of them being comparable with the high performance yeast used in the industrial production of ethanol, which was adopted as a reference. The non-Saccharomyces strains showed high efficiency, very low ethanol yield and very high Y ac/s and Y g/s values, except Pichia subpelliculosa, which behaved very similarly to the S. cerevisiae strains. Hierarchical Cluster Analysis and Principal Component Analysis showed the fermentation yield (or substrate conversion) as being the variable which contributed most to the separation of the strains into different groups.  相似文献   

6.
Nodules of cowpea plants (Vigna unguiculata (L.) Walp. cv. Vita 3 :Bradyrhizobium CB756) cultured for periods of 23 d with their root systems maintained in atmospheres containing a range of partial pressures of O2 (pO2; 1–80%, v/v, in N2) formed and exported ureides (allantoin and allantoic acid) as the major products of fixation at all pO2 tested. In sub-ambient pO2 (1 and 2.5%) nodules contained specific activities of uricase (urate: O2 oxidoreductase; EC 1.7.3.3) and allantoinase (allantoin hydrolyase; EC 3.5.2.5) as much as sevenfold higher than in those from air. On a cell basis, uninfected cells in nodules from 1% O2 contained around five times the level of uricase. Except for NAD: glutamate synthase (EC 1.4.1.14), which was reduced in sub-ambient O2, the activities of other enzymes of ureide synthesis were relatively unaffected by pO2. Short-term effects of pO2 on assimilation of fixed nitrogen were measured in nodules of air-grown plants exposed to subambient pO2 (1, 2.5 or 5%, v/v in N2) and15N2. Despite a fall in total15N2 fixation, ureide synthesis and export was maintained at a high level except in 1% O2 where formation was halved. The data indicate that in addition to the structural and diffusional adaptations of cowpea nodules which allow the balance between O2 supply and demand to be maintained over a wide range of pO2, nodules also show evidence of biochemical adaptations which maintain and enhance normal pathways for the assimilation of fixed nitrogen. This work was supported by a grant from the Australian Research Council (to C.A.A.) and an Australian Development Assistance Bureau postgraduate fellowship (to F.D.D.).  相似文献   

7.
The development of microorganims that efficiently ferment lactose has a high biotechnological interest, particularly for cheese whey bioremediation processes with simultaneous bio-ethanol production. The lactose fermentation performance of a recombinant Saccharomyces cerevisiae flocculent strain was evaluated. The yeast consumed rapidly and completely lactose concentrations up to 150 g l−1 in either well- or micro-aerated batch fermentations. The maximum ethanol titre was 8% (v/v) and the highest ethanol productivity was 1.5–2 g l−1 h−1, in micro-aerated fermentations. The results presented here emphasise that this strain is an interesting alternative for the production of ethanol from lactose-based feedstocks.  相似文献   

8.
Statistical experimental design was used to optimize medium constituents for emulsan production by Acinetobacter venetianus RAG-1 in batch cultivation. The factors affecting emulsan production were screened by a two-level factorial design, and the optimal concentration of medium constituents for emulsan production were determined by the method of steepest path ascent and central composite experimental design. Experimental results showed that the optimal medium constituents were 9.16 g/L ethanol, 8.2 g/L KH2PO4, 23.32 g/L K2HPO4, 5.77 g/L (NH4)2SO4 and 0.354 g/L MgSO4•7H2O. Under this optimal composition, the predicted emulsan production was 72.198 mg/L, and experimental value was 73.312 mg/L for 80 h culture in the shake flasks, and the emulsan yield by A. venetianus RAG-1 was enhanced nearly 1.48-fold (from 49.5 to 73.312 mg/L). Based on the results, we identify the optimal medium constituents for emulsan production and could take advantage of strategy for scale up the fermentation of emulsan production.  相似文献   

9.
The fermentation process for a poly (L-lactide) (PLA)-degrading enzyme production by a newly isolate of thermophilic PLA-degrading Actinomadura sp. T16-1 was investigated. The strain produced 33.9 U/mL of enzyme activity after cultivation at 50°C under shaking of 150 rpm for 96 h in a medium consisting of (w/v) 0.05% PLA film, 0.2% gelatin, 0.4% (NH4)2SO4, 0.4% K2HPO4, 0.2 % KH2PO4, and 0.02% MgSO4 · 7H2O. The optimal concentration of PLA film and gelatin obtained by response surface methodology (RSM) for the highest production of PLA-degrading enzyme was 0.035% (w/v) and 0.238% (w/v), respectively. Under these conditions, the model predicted 40.4 U/mL of PLA-degrading activity and the verification of the optimization showed 44.6 U/mL of PLA-degrading enzymatic activity in the flasks experiment. The maximum PLA-degrading activity reached 150 U/mL within 72 h cultivation in the 3-L airlift fermenter.  相似文献   

10.
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180 °C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l−1 h−1. The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of β-glucosidase by P. stipitis. During SSF, free extracellular β-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.  相似文献   

11.
A novel method is proposed to produce both phytase and single-cell protein in recombinant Pichia pastoris fermentation using monosodium glutamate wastewater (MSGW) as the basal medium. Recombinant P. pastoris MR33 transformed with a phytase gene (AppA-m) from Escherichia coli was constructed and showed capability to utilize ammonium as the only nitrogen source. The fermentation medium was optimized in shake flasks by single-factor test and response surface methodology. A fed-batch system containing 30% MSGW, 50 g/l glucose, 1.58 g/l CaSO4, 5.18 g/l MgSO4 and 6.67 g/l KH2PO4 was developed in a 3.7-l bioreactor. The maximum phytase activity in the MSGW medium reached 3,380 U/ml, 84.2% of that in chemically defined medium, and the dry cell weight was 136 g/l. The single-cell protein (SCP; 46.66% dry cell weight) contains a variety of amino acids and is low in fat, which is ideal for utilization in animal feed. Thus, it is feasible to use MSGW medium for the production of enzymes that can be expressed in P. pastoris.  相似文献   

12.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

13.
Bacillus sphaericus has been widely used in mosquito control programs, but the large-scale production of this bacterium is expensive because of the high cost of the medium. In this study, we attempted to develop a cost-effective medium, based on inexpensive, locally available raw materials including soybean flour (Glycine max) and peanut cake powder (Arachis hypogea) by using 100-l bioreactor. Sporulation, toxicity and biomass were satisfactory after B. sphaericus was produced on both media. Use of the soybean culture medium resulted in “maximum” toxicity (LC50 14.02 ng/ml against third instar Culex quinquefasciatus larvae), highest spore count (3.7 × 10spores/ml) and maximum biomass (4.6 g/l) within a short fermentation time of 21 h. Hence, this soybean-based culture medium was considered most economical for the large-scale industrial production of B. sphaericus.  相似文献   

14.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

15.
Various seed dressing and soil application formulations were developed from Trichoderma viride, T. virens and T. harzianum to increase the shelf life of bio-formulations used to manage dry root rot (Rhizoctonia bataticola) of mungbean (Vigna radiata), a major yield limiting factor in mungbean production. The shelf life of the formulations developed in the present study was monitored by counting colony forming units (cfu) up to 25 months of storage at room temperature (26 ± 8 °C). A newly developed seed dressing formulation, Pusa 5SD based on peat powder (47.5%), Sabudana powder (Manihot esculenta) (47.5%) and carboxymethyl cellulose (5%) and a newly developed soil application formulation, Pusa Biopellet (PBP) based on sodium alginate, aluminium silicate, Sabudana powder and tap water (1:5:5:100 w/w/w/v) exhibited longer shelf life. Another formulation Pusa Biogranule (PBG) based on wheat and pulse brans varied in cfu counts during different periods of storage. Pusa 5SD could be used up to 25 months of storage while PBP 10G and PBG 5 could be used up to 15 months of storage (>105 cfu). The efficacy of the formulations was evaluated in pot experiments against the disease. In these experiments, T. harzianum based PBP 10G and PBG 5 for soil application, and Pusa 5SD for seed treatment were found to be superior to others in reducing the dry root rot incidence, and increasing the seed germination and shoot and root lengths. However, a combination of soil application of PBP 10G (T. harzianum) and seed treatment with T. harzianum based Pusa 5SD + carboxin was found superior to the use of any of these formulations alone in reducing the dry root rot incidence (87.2%) and increasing the seed germination (43.0%), shoot length (40.3%), root length (37.0%) and grain yield (54.6%) of mungbean crop over those of untreated control under sick field conditions.  相似文献   

16.
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour.  相似文献   

17.
Re-engineering Escherichia coli for ethanol production   总被引:2,自引:1,他引:1  
A lactate producing derivative of Escherichia coli KO11, strain SZ110, was re-engineered for ethanol production by deleting genes encoding all fermentative routes for NADH and randomly inserting a promoterless mini-Tn5 cassette (transpososome) containing the complete Zymomonas mobilis ethanol pathway (pdc, adhA, and adhB) into the chromosome. By selecting for fermentative growth in mineral salts medium containing xylose, a highly productive strain was isolated in which the ethanol cassette had been integrated behind the rrlE promoter, designated strain LY160 (KO11, Δfrd::celY Ec ΔadhE ΔldhA, ΔackA lacA::casAB Ko rrlE::(pdc Zm -adhA Zm -adhB Zm -FRT-rrlE) pflB + ). This strain fermented 9% (w/v) xylose to 4% (w/v) ethanol in 48 h in mineral salts medium, nearly equal to the performance of KO11 with Luria broth.  相似文献   

18.
In vitro assays were undertaken to evaluate the control of two sapstain fungi, Leptographium procerum and Sphaeropsis sapinea by a combination of chitosan or chitosan oligomer and an albino strain of Trichoderma harzianum. Spore germination and hyphal growth of the test fungi were assessed on media amended with chitosan or chitosan oligomer with and without T. harzianum using either simultaneous inoculation with test fungus or inoculation 1, 2, or 3 days after pre-infection with test fungus.There was no mycelial growth of the test fungi regardless of chitosan concentrations used when either L. procerum or S. sapinea was simultaneously inoculated with T. harzianum. However, the dose–response of chitosan or chitosan oligomer on the test fungi was apparent when T. harzianum was not simultaneously inoculated with test fungus but introduced later. There was a greater growth reduction at higher concentrations (0.075–0.1% v/v) of chitosan, and overall chitosan oligomer was more effective than chitosan aqueous solution.Chitosan alone was able to restrict or delay the germination of spores but the combination of chitosan and T. harzianum inhibited spore germination and hence colony formation of test fungi regardless of time delay.  相似文献   

19.
Summary During the single culture fermentation of grape must K. thermotolerans, strain TH941, isolated in a wine-producing region in northern Greece, reached a very high cell concentration of 8.4 log (c.f.u ml−1), followed by a rapid decline of the viable cells. The yeast produced 9.6 g L-lactic acid l−1 during the growth phase, 7.58% v/v of ethanol and showed a limited degradation of L-malic acid as well as a low production of volatile acidity. In the presence of 3% v/v and 6% v/v of ethanol the K. thermotolerans isolate was able to grow. At 9% v/v of ethanol it could not grow but showed no loss of viability for 10 days.  相似文献   

20.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号