首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S L Li  P F Yan  I B Paz  Y Fujita-Yamaguchi 《Biochemistry》1992,31(49):12455-12462
We have expressed, purified, and characterized the insulin receptor protein tyrosine kinase (PTK) retaining the transmembrane and downstream domains. The proteins expressed in insect cells using a baculovirus expression system were identified as membrane-bound by immunofluorescence staining and biochemical characterization. One-step purification by immunoaffinity chromatography from Triton X-100 cell extracts resulted in a approximately 360-fold increase in the specific kinase activity with a yield of approximately 50%. An appMr = approximately 60,000 protein was the major component identified by both silver staining of the purified enzyme and immunostaining of the crude extracts after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Using nondenaturing conditions, the molecular weight was estimated to be approximately 250,000 and approximately 500,000 by glycerol gradient centrifugation and gel permeation chromatography, respectively, suggesting that oligomers of the beta-subunit domains such as tetramers and octamers are formed. The basal PTK activity of this enzyme was much higher than those of previously reported soluble-form insulin receptor PTKs expressed in insect cells or the native receptor. Km and Vmax for two substrates, src-related peptide and poly(Glu, Tyr) (4:1), were 2.4 mM and 2.5 mumol min-1 mg-1 and 0.26 mM and 1.2 mumol min-1 mg-1, respectively. Specific activities measured under two previously reported conditions using histone H2B as a substrate were 100 or 135 nmol min-1 mg-1, in contrast to those of soluble PTKs which were reported to be 20 or 70 nmol min-1 mg-1, respectively. The purified enzyme was autophosphorylated at Tyr residues. Autophosphorylation activated the enzyme approximately 3-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An insulin-stimulated phosphorylation cascade was examined in rat liver after insulin injection via a portal vein by the use of immune complex kinase assays specific to the mitogen-activated protein (MAP) kinase and S6 kinase II homologue (rsk) kinase. We have prepared an antibody against the peptide consisting of a carboxyl-terminal portion of the extracellular signal-regulated kinase 1 (alpha C92), one of the MAP kinases, and an antibody against the peptide consisting of the carboxyl terminus of the mouse S6 kinase II homologue (alpha rsk(m)C). In alpha C92 immune complex assay, maximal activation of rat liver MAP kinases (approximately 4.3-fold) were observed 4.5 min after insulin injection. We also observed an insulin-stimulated MAP kinase activity (approximately 3-fold) in liver extracts from insulin-treated rat in fractions eluted from phenyl-Sepharose with 30-50% ethylene glycol. Kinase assay in myelin basic protein (MBP)-containing gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by denaturation with 6 M guanidine HCl, and renaturation revealed that insulin injection stimulated the kinase activity of the 42- and 44-kDa proteins, which corresponded to the two distinct MAP kinases. In alpha rsk(m)C immune complex assay, maximal stimulation (approximately 5-fold) of the S6 peptide (Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala) kinase activity was observed 7.5 min after insulin injection. In addition, MAP kinases purified from insulin-treated rat liver were able to activate S6 peptide kinase activity in vitro in alpha rsk(m)C immunoprecipitates from untreated rat liver, accompanied by the appearance of several phosphorylated bands including a major band at 88 kDa. We also examined whether insulin injection stimulates the MAP kinase activator (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) in rat liver. Using recombinant Xenopus MAP kinase, fractions of Q-Sepharose eluted early in the NaCl gradient were found to have MAP kinase activator activity accompanied by the phosphorylation of 42-kDa recombinant Xenopus MAP kinase. From these data, we demonstrate three tiers of a cascade composed of the MAP kinase activator, MAP kinases, and an S6 peptide kinase activity in rat liver under physiological conditions in the intact animal.  相似文献   

3.
A soluble, sodium-nitroprusside-stimulated guanylate cyclase as been purified from bovine lung by DEAE-cellulose chromatography, ammonium sulfate precipitation, chromatography on Blue Sepharose CL-6B and preparative gel electrophoresis. Apparent homogeneity was obtained after at least 7000-fold purification with a yield of 3%. A single stained band (Mr 72000) was observed after gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme migrated as one band also under non-denaturing conditions in acrylamide gels (5-12%). The mobility of this band corresponded to an Mr of 145000. The enzyme sedimented on sucrose gradients with an S20, w of 7.0 S. Gel filtration yielded a Stokes' radius of 4.6 nm. These data suggest that the enzyme has an Mr of approximately 150000 and consists of two, presumably identical, subunits of Mr 72000. Sodium nitroprusside stimulated the purified enzyme 15-fold and 140-fold to specific activities of 8.5 and 15.7 mumol of cGMP formed min-1 mg-1 in the presence of Mn2+ and Mg2+, respectively. Formation of cGMP was proportional to the incubation time and to the amount of enzyme added. The stimulatory effect of sodium nitroprusside was half-maximal at about 2 microM, was observed immediately after addition and could be reversed either by dilution or by removal of sodium nitroprusside on a Sephadex G-25 column. The purified enzyme in the absence of catalase was stimulated by sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine and 3-morpholino-sydnonimine and in the presence of catalase by sodium nitrite and sodium azide. In the presence of Mn2+ and sodium nitroprusside, the purified enzyme catalyzed the formation of cAMP from ATP at a rate of 0.6 mumol min-1 mg-1.  相似文献   

4.
Urease was purified 592-fold to homogeneity from the anaerobic rumen bacterium Selenomonas ruminantium. The urease isolation procedure included a heat step and ion-exchange, hydrophobic, gel filtration, and fast protein liquid chromatography. The purified enzyme exhibited a Km for urea of 2.2 +/- 0.5 mM and a Vmax of 1100 mumol of urea min-1 mg-1. The molecular mass estimated for the native enzyme was 360,000 +/- 50,000 daltons, whereas a subunit value of 70,000 +/- 2,000 daltons was determined. These results are in contrast to the findings of Mahadevan et al. (Mahadevan, S., Sauer, F. D., and Erfle, J. D. (1977) Biochem. J. 163, 495-501) in which isolated rumen urease was reported to be one-third this size (Mr 120,000-130,000) and to catalyze urea hydrolysis at a maximum velocity of only 53 mumol min-1 mg-1. S. ruminantium urease contained 2.1 +/- 0.4 nickel ions/subunit, comparable to the nickel content in jack bean urease (Dixon, N.E., Gazzola, C., Blakeley, R.L., and Zerner, B. (1975) J. Am. Chem. Soc. 97, 4131-4133). Thus, the active site of bacterial urease is very similar to that found in the plant enzymes.  相似文献   

5.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

6.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

7.
An extralysosomal tripeptide-releasing aminopeptidase was recently discovered in rat liver (B?l?w, R.-M., Ragnarsson, U., and Zetterqvist, O. (1983) J. Biol. Chem. 258, 11622-11628). In the present work this tripeptidyl peptidase is shown to occur in several rat tissues and in human erythrocytes. The erythrocyte enzyme was purified about 80,000-fold from a hemolysate while the rat liver enzyme was purified about 4,000-fold from a homogenate. Upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions more than 90% of the protein was represented by a polypeptide of Mr 135,000 in both cases. In addition, the two enzymes eluted at similar positions in the various chromatographic steps, showed similar specific activity, and had a pH optimum around 7.5. A tryptic pentadecapeptide from the alpha-chain of human hemoglobin, Val-Gly-Ala-His-Ala-Gly-Glu-Tyr-Gly-Ala-Glu-Ala-Leu-Glu-Arg, i.e. residues 17-31, was found to be sequentially cleaved by the erythrocyte enzyme into five tripeptides, beginning from the NH2 terminus. Chromogenic tripeptidylamides showed various rates of hydrolysis at pH 7.5. With Ala-Ala-Phe-4-methyl-7-coumarylamide, Km was 16 microM and Vmax 13 mumol min-1 . mg-1, comparable to the standard substrate Arg-Arg-Ala-Ser(32P)-Val-Ala values (Km 13 microM and Vmax 24 mumol . min-1 . mg-1). The tripeptidyl peptidase of human erythrocytes was classified as a serine peptidase from its irreversible inhibition by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The rate of inhibition was decreased by the presence of an efficient competitive inhibitor, Val-Leu-Arg-Arg-Ala-Ser-Val-Ala (Ki 1.5 microM). [3H]Diisopropylphosphate was incorporated to the extent of 0.7-0.9 mol/mol of Mr 135,000 subunit, which confirms the high purity of the enzyme.  相似文献   

8.
The cyclic AMP-dependent protein kinase catalyzes the phosphorylation of hydroxyproline present in the heptapeptide, Leu-Arg-Arg-Ala-Hyp-Leu-Gly. The Km value for the reaction with this substrate was high (approximately 18 mM) compared to the Km values reported for the analogous threonine and serine-containing peptides, which were 0.59 mM and 0.016 mM, respectively (Kemp, B.E., Graves, D.J., Benjamini, E., and Krebs, E.G. (1977) J. Biol. Chem. 252, 4888-4894). The Vmax value with the hydroxyproline-containing peptide was 1 mumol . min-1 mg-1 in contrast to Vmax values of 6 mumol . min-1 mg-1 and 20 mumol . min-1 mg-1 for the threonine- and serine-containing peptides, respectively. Phosphate esterified to hydroxyproline present in the peptide was relatively stable in hot alkali, only 10% being released as Pi within 30 min in 0.1 N NaOH at 100 degrees C, whereas all of the phosphate was released from the phosphoserine peptide analogue under these conditions. Phosphohydroxyproline in the peptide was also more stable to acid (5.7 N HCl, 110 degrees C) than phosphoserine, the time for 50% release as Pi being 15 h in contrast to 6 h for the latter.  相似文献   

9.
Human T-lymphoblast deoxycytidine kinase: purification and properties   总被引:3,自引:0,他引:3  
Previous observations present tremendous variations in the properties of deoxycytidine kinase. To clarify the properties and physiologic role of deoxycytidine kinase, we have undertaken its purification. Deoxycytidine kinase was purified from cultured human T-lymphoblasts (MOLT-4) to 90% purity with an estimated specific activity of 8 mumol min-1 (mg of protein)-1. The purification procedure included ammonium sulfate precipitation, Superose-12 HPLC gel filtration chromatography, DE-52 ion-exchange chromatography, AMP-Sepharose 4B affinity chromatography, and dCTP-Sepharose-4B affinity chromatography. Deoxyguanosine, deoxyadenosine, and cytidine phosphorylating activities copurified with deoxycytidine kinase to final specific activities of 7.2, 13.5, and 4 mumol min-1 (mg of protein)-1, respectively. The enzyme is very unstable at low protein concentration and is stabilized by storage at -85 degrees C with 1 mg/mL bovine serum albumin, 20% glycerol (v/v), 200 mM potassium chloride, and 25 mM dithiothreitol. The molecular weight was 60,000, and the Stokes radius was 32 A by gel filtration chromatography. The subunit molecular weight was 30,500. This enzyme had apparent Km values of 1.5, 430, 500, 450, and 40 microM for deoxycytidine, deoxyguanosine, deoxyadenosine, cytidine, and cytosine arabinoside, respectively. The pH optimum ranged from 6.5 to 9.0. Mg2+ and Mn2+ were the preferred divalent cations. ATP, GTP, dGTP, ITP, dITP, TTP, and XTP were substrates for the enzymes. Our study indicates that deoxycytidine kinase is a dimer with two subunits and has phosphorylating activity for deoxyguanosine, deoxyadenosine, cytidine, and cytosine arabinoside. This highly purified enzyme will facilitate the study of its regulation and phosphorylation of anticancer or antiviral nucleoside analogues.  相似文献   

10.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

11.
Phosphorylase kinase was purified (110-fold) from bovine stomach smooth muscle by a procedure involving DEAE-cellulose chromatography, ammonium sulfate fractionation and glycerol density ultracentrifugation. On sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the final enzyme preparation shows a single protein band of 43 kDa. The purified protein exhibits a close similarity with bovine aortic actin, as revealed by amino acid analysis and sequencing of a tryptic decapeptide fragment, although it differs widely from actin in several respects. In our effort to separate phosphorylase kinase activity from the 43 kDa protein we used a variety of chromatographic procedures, but in all cases the catalytic activity (when eluted) was accompanied by the 43 kDa protein band. Bovine stomach phosphorylase kinase exhibits an apparent molecular mass of 950 kDa, it shows a low Vmax value for phosphorylase b (85 nmol.min-1.mg-1), a pH 6.8/8.2 activity ratio of 0.23, it has an absolute requirement for Ca2+ and it is activated 1.8-fold by Ca2+/calmodulin. Furthermore, the protein kinase activity is neither inhibited by antibodies against rabbit skeletal muscle phosphorylase kinase nor activated by protein phosphorylation. These results suggest that bovine stomach phosphorylase kinase is tightly bound to an aggregate of actin-like molecules.  相似文献   

12.
Ornithine transcarbamylase (OTCase) was purified from the small intestine of rat and the properties of the gut enzyme were compared with those of the enzyme from liver. The enzymes from both sources bound to the transition-state analog inhibitor, delta-N-(phosphonoacetyl)-L-ornithine, immobilized on Sepharose and eluted with carbamyl phosphate as a homogeneous preparation. The specific activities of the pure enzymes were 966 mumol min-1 mg-1 and 928 mumol min-1 mg-1 from liver and gut respectively, and the molecular mass, based on electrophoretic mobility, was 38 000 Da. The isoelectric point of the enzymes from both sources was 7.3. The enzymes from both sources cross-react to the same extent with antibodies against the liver enzyme on Western transfers and the size of the mRNA was identical on Northern transfers probed with a cDNA for the liver enzyme. Although OTCase is apparently the same gene product in both liver and gut, the enzyme levels respond differently to alterations in the protein content of the diet. OTCase in liver increased from 0.76 mumol min-1 microgram-1 DNA on 15% casein to 1.3 mumol min-1 microgram-1 DNA on 60% casein (P less than 0.01) whereas in small intestine the level decreased from 8.8 nmol min-1 microgram DNA on 15% casein to 5.7 nmol min-1 microgram-1 DNA on 60% casein (P less than 0.05). When expressed on a fresh-weight basis, the enzyme activity in liver shows the characteristic increase with increasing protein, whereas the activity in gut does not. The connection between these differences in gene expression and the different physiological roles of OTCase in liver and gut is discussed.  相似文献   

13.
A protein kinase, termed microtubule-associated protein (MAP) kinase, which phosphorylates microtubule-associated protein 2 (MAP-2) in vitro and is stimulated 1.5-3-fold in extracts from insulin-treated 3T3-L1 cells has been identified (Ray, L.B., and Sturgill, T.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1502-1506). Here, we describe chromatographic properties of MAP kinase and provide biochemical characterization of the partially purified enzyme. Isolation of the enzyme is facilitated by its unusually high affinity for hydrophobic interaction chromatography matrices. The molecular weight of the partially purified enzyme was determined to be 35,000 by gel filtration chromatography and 37,000 by glycerol gradient centrifugation. MAP kinase activity of chromatographic fractions correlated precisely with the presence of a 40-kDa phosphoprotein detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. MAP kinase has a Km of 7 microM for ATP and does not utilize GTP. Acetyl-CoA carboxylase, ATP citrate-lyase, casein, histones, phosvitin, protamine, and ribosomal protein S6 were all poor substrates relative to MAP-2. The enzyme is inhibited by fluoride and beta-glycerol phosphate but not by heparin. These properties of MAP kinase distinguish it from protein kinases previously described in the literature.  相似文献   

14.
An aminopeptidase was purified about 4,000-fold from the clarified homogenate of bovine leukocytes by a series of column chromatographies on DEAE-cellulose, hydroxyapatite, Sephadex G-150, and DEAE-Toyopearl. The purified enzyme had a specific activity of 3.8 mumol X min-1 X mg-1 with arginine beta-naphthylamide (Arg-2-NNap) as substrate, and a minute amount of contaminating protein was found to be present by gel electrophoresis. The molecular weight of the enzyme was estimated to be 94,000 by gel filtration on Sephadex G-150. The enzyme had a broad substrate specificity and a pH optimum between 6.5 and 7.0 for the hydrolysis of alpha-aminoacyl beta-naphthylamides. It hydrolyzed beta-naphthylamides of basic, aliphatic, and aromatic amino acids, and also catalyzed the liberation of amino-terminal phenylalanine from phenylalanyl peptides. The enzyme was inhibited by bestatin, puromycin, 1,10-phenanthroline, sulfhydryl reagents, and a variety of heavy metal ions. Only the cobaltous ion stimulated the enzyme and the values of both Km and Vmax for Arg-2-NNap increased. In gross properties the present enzyme resembles porcine liver aminopeptidase reported previously (Kawata, S., et al. (1982) J. Biochem. 92, 1093-1101) very closely.  相似文献   

15.
The membrane-bound form of phosphatidylinositol-4-phosphate (PtdInsP) kinase was purified 4,300-fold from human red blood cells to a specific activity of 117 nmol min-1 mg-1. Although this enzyme copurified with red blood cell membranes, it was solubilized by high salt extraction in the absence of detergent indicating that it is a peripheral membrane protein. The major protein seen in the most purified preparation migrated at 53,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major PtdInsP kinase activity in this preparation was also coincident with this 53,000-dalton band upon renaturation of activity from SDS-PAGE. To test further whether the 53,000-dalton protein contained PtdInsP kinase activity, antibodies were prepared against the gel-purified 53,000-dalton protein. This antiserum was able to precipitate both the 53,000-dalton peptide and PtdInsP kinase activity from red blood cell membranes. The apparent size of the native enzyme in the most purified preparation was determined to be 150,000 +/- 25,000 daltons by gel filtration. This PtdInsP kinase activity was at least 100-fold more active in phosphorylating PtdInsP than phosphatidylinositol and was easily separated from the red cell membrane phosphatidylinositol kinase by salt extraction. Analysis of the reaction product, phosphatidylinositol 4,5-bisphosphate, indicates that the enzyme phosphorylates phosphatidylinositol 4-phosphate specifically at the 5'-hydroxyl of the inositol ring. The apparent Km for ATP was 2 microM, and the concentrations of Mg2+ and Mn2+ giving half-maximal activity were 2 and 0.2 mM, respectively. Mg2+ supported 3-fold higher activity than Mn2+ at optimal concentrations. The enzymatic activity was inhibited by its product, phosphatidylinositol 4,5-bisphosphate and enhanced by phosphatidylserine.  相似文献   

16.
A calmodulin-dependent glycogen synthase kinase distinct from phosphorylase kinase has been purified approximately equal to 5000-fold from rabbit skeletal muscle by a procedure involving fractionation with ammonium sulphate (0-33%), and chromatographies on phosphocellulose, calmodulin-Sepharose and DEAE-Sepharose. 0.75 mg of protein was obtained from 5000 g of muscle within 4 days, corresponding to a yield of approximately equal to 3%. The Km for glycogen synthase was 3.0 microM and the V 1.6-2.0 mumol min-1 mg-1. The purified enzyme showed a major protein staining band (Mr 58 000) and a minor component (Mr 54 000) when examined by dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was determined to be 696 000 by sedimentation equilibrium centrifugation, indicating a dodecameric structure. Electron microscopy suggested that the 12 subunits were arranged as two hexameric rings stacked one upon the other. Following incubation with Mg-ATP and Ca2+-calmodulin, the purified protein kinase underwent an 'autophosphorylation reaction'. The reaction reached a plateau when approximately equal to 5 mol of phosphate had been incorporated per 58 000-Mr subunit. Both the 58 000-Mr and 54 000-Mr species were phosphorylated to a similar extent. Autophosphorylation did not affect the catalytic activity. The calmodulin-dependent protein kinase initially phosphorylated glycogen synthase at site-2, followed by a slower phosphorylation of site-1 b. The protein kinase also phosphorylated smooth muscle myosin light chains, histone H1, acetyl-CoA carboxylase and ATP-citrate lyase. These findings suggest that the calmodulin-dependent glycogen synthase kinase may be a enzyme of broad specificity in vivo. Glycogen synthase kinase-4 is an enzyme that resembles the calmodulin-dependent glycogen synthase kinase in phosphorylating glycogen synthase (at site-2), but not glycogen phosphorylase. Glycogen synthase kinase-4 was unable to phosphorylate any of the other proteins phosphorylated by the calmodulin-dependent glycogen synthase kinase, nor could it phosphorylate site 1 b of glycogen synthase. The results demonstrate that glycogen synthase kinase-4 is not a proteolytic fragment of the calmodulin-dependent glycogen synthase kinase, that has lost its ability to be regulated by Ca2+-calmodulin.  相似文献   

17.
The intent of this study was to observe the effects of different treadmill running programs upon selected biochemical properties of soleus muscle from young rats. Young 10 day litter-mates were assigned to endurance (E), spring (S) and control (C) groups. Each was partitioned into either 21 or 51 day exercising groups and 10 day controls. For C the myofibril ATPase activity at 21 and 51 days were lower than 10 day activity (p less than or equal to 0.05). In the 51 day E group ATPase activity (0.378 +/- 0.009 mumol Pi X mg-1 X min-1) was greater than at 10 and 21 days (0.307 +/- 0.006 and 0.323 +/- 0.008 mumol Pi X mg-1 X min-1) (p less than or equal to 0.05). No change occurred in the S group from 10 to 21 and 51 days (p greater than or equal to 0.05). Both the 21 and 51 day S (0.318 +/- 0.011 and 0.399 +/- 0.010 mumol Pi X mg-1 X min-1) and E (0.323 +/- 0.008 and 0.378 +/- 0.009 mumol Pi X mg-1 X min-1) groups had higher activity compared to the C group (0.193 +/- 0.029 and 0.172 +/- 0.031 mumol Pi X mg-1 X min-1) (p less than or equal to 0.05). Maturation (10--51 day) resulted in a lowered sarcoplasmic reticulum (SR) yield and Ca2+ binding (p less than or equal to 0.05) while Ca2+ uptake ability did not change (p greater than or equal to 0.05). SR yield, Ca2+ binding and uptake were not altered with S training (p greater than or equal to 0.05). The E training resulted in greater Ca2+ uptake at 51 days compared to C and S (p less than or equal to 0.05), with no change in Ca2+ binding (p greater than or equal to 0.05). The data suggest that E training alters the normal development pattern of young rat soleus muscle.  相似文献   

18.
Two peaks of mitogen-activated protein (MAP) kinase activator activity are resolved upon ion exchange chromatography of cytosolic extracts from epidermal growth factor-stimulated A431 cells. Two forms of the activator (1 and 2) have been purified from these peaks, using chromatography on Q-Sepharose, heparin-agarose, hydroxylapatite, ATP-agarose, Sephacryl S-300, Mono S, and Mono Q. The two preparations each contained one major protein band with an apparent molecular mass of 46 or 45 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Evidence identifying the MAP kinase activators as the 46- and 45-kDa proteins is presented. Using inactive mutants of MAP kinase as potential substrates, it was found that each preparation of MAP kinase activator catalyzes phosphorylation of the regulatory residues, threonine 188 and tyrosine 190, of Xenopus MAP kinase. These results support the concept that the MAP kinase activators are protein kinases. These MAP kinase kinases demonstrate an apparent high degree of specificity toward the native conformation of MAP kinase, although slow autophosphorylation on serine, threonine, and tyrosine residues and phosphorylation of myelin basic protein on serine and threonine residues is detected as well.  相似文献   

19.
An insulin-stimulated ribosomal protein S6 kinase from rabbit liver   总被引:14,自引:0,他引:14  
In this report we describe an activated form of S6 protein kinase in rabbits treated acutely with insulin. The major insulin-stimulated activity in rabbit liver is increased 2- to 5-fold compared to material from untreated animals based on DEAE-cellulose profiles. The activity observed in DEAE-cellulose fractions can be separated into a major and a minor peak, each having very similar chromatographic behavior. Chromatography on DEAE-cellulose, S-Sepharose, heptyl-Sepharose, heparin-agarose, and Mono Q results in greater than 20,000-fold purification of the insulin-stimulated enzyme with a 12% recovery. The stimulated activity has chromatographic properties similar to an S6 protein kinase studied previously in 3T3-L1 cells (Cobb, M. H. (1986) J. Biol. Chem. 261, 12994-12999) and other systems. The enzyme purified from insulin-treated animals contains a major band that migrates in sodium dodecyl sulfate-polyacrylamide gels with Mr congruent to 70,000; this band also appears in the control preparation. Treatment of the insulin-stimulated S6 kinase with the catalytic subunit of phosphatase 2a reduces its activity by 97%. The activity of the inactivated S6 kinase is stimulated nearly 5-fold by a 15-min preincubation with partially purified insulin-stimulated microtubule-associated protein-2 kinase.  相似文献   

20.
2-Methyl-branched chain acyl-CoA dehydrogenase was purified to homogeneity from rat liver mitochondria. The native molecular weight of the enzyme was estimated to be 170,000 by gel filtration. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis both with and without 2-mercaptoethanol, the enzyme showed a single protein band with Mr = 41,500, suggesting that this enzyme is composed of four subunits of equal size. Its isoelectric point was 5.50 +/- 0.2, and A1%280 nm was 12.5. This enzyme contained protein-bound FAD. The purified enzyme dehydrogenated S-2-methylbutyryl-CoA and isobutyryl-CoA with equal activity. The activities with each of these compounds were co-purified throughout the entire purification procedure. This enzyme also dehydrogenated R-2-methylbutyryl-CoA, but the specific activity was considerably lower (22%) than that for the S-enantiomer. The enzyme did not dehydrogenate other acyl-CoAs, including isovaleryl-CoA, propionyl-CoA, butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA, at any significant rate. Apparent Km and Vmax values for S-2-methylbutyryl-CoA were 20 microM and 2.2 mumol min-1 mg-1, respectively, while those for isobutyryl-CoA were 89 microM and 2.0 mumol min-1 mg-1 using phenazine methosulfate as an artificial electron acceptor. The enzyme was also active with electron transfer flavoprotein. Tiglyl-CoA and methacrylyl-CoA were identified as the reaction products from S-2-methylbutyryl-CoA and isobutyryl-CoA, respectively. 2-Ethylacrylyl-CoA was produced from R-2-methylbutyryl-CoA. Tiglyl-CoA competitively inhibited the activity with both S-2-methylbutyryl-CoA and isobutyryl-CoA with a similar Ki. The enzyme activity was also severely inhibited by several organic sulfhydryl reagents such as N-ethylmaleimide, p-hydroxymercuribenzoate, and methyl mercury iodide. The pattern and degree of inhibition were essentially identical for both substrates. The purified 2-methyl-branched chain acyl-CoA dehydrogenase was immunologically distinct from isovaleryl-CoA-, short chain acyl-CoA-, medium chain acyl-CoA-, or long chain acyl-CoA dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号