首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: To study mechanisms of K+ transport in peripheral nerve, uptake of rubidium (Rb+), a K+ tracer, was characterized in rat tibial nerve myelinated axons and glia. Isolated nerve segments were perfused with zero-K+ Ringer's solutions containing Rb+ (1–20 m M ) and x-ray microanalysis was used to measure water content and concentrations of Rb, Na, K, and Cl in internodal axoplasm, mitochondria, and Schwann cell cytoplasm and myelin. Both axons and Schwann cells were capable of removing extracellular Rb+ (Rb+o) and exchanging it for internal K+. Uptake into axoplasm, Schwann cytoplasm, and myelin was a saturable process over the 1–10 m M Rb+o concentration range, although corresponding axoplasmic uptake rates were higher than respective glial velocities. Mitochondrial accumulation was a linear function of axoplasmic Rb+ concentrations, which suggests involvement of a nonenzymatic process. At 20 m M Rb+o, a differential stimulatory response was observed; i.e., axoplasmic Rb+ uptake velocities increased more than fivefold relative to the 10 m M rate, and glial cytoplasmic uptake rose almost threefold. Finally, Rb+o uptake rate into axons and glia was completely inhibited by ouabain (2–4 m M ) exposure or incubation at 4°C. These results suggest that Rb+ uptake into peripheral nerve internodal axons and Schwann cells is mediated by Na+,K+-ATPase activity and implicate the presence of axonal- and glial-specific Na+ pump isozymes.  相似文献   

2.
Abstract: Effects of 2,5-hexanedione on elemental concentrations and water content of peripheral nerve myelinated axons were determined using electron probe x-ray microanalysis. Axons (small, medium, and large) were analyzed in unfixed cryosections from rat tibial and proximal sciatic nerve samples. Animals were intoxicated with 2,5-hexanedione by two dosing paradigms: intraperitoneal or oral. Regardless of the route of exposure, internodal axoplasm of small and medium axons from both nerve regions exhibited selective, progressive reductions in dry weight K concentrations and water content. When calculated on a wet weight basis, K levels were comparable to or slightly above control values in tibial nerve, whereas in sciatic nerve, small transient decreases in wet weight K were evident. These changes in K and water correlated with the development of axonal atrophy. The wet and dry weight internodal elemental changes reported here do not suggest a metabolic or axolemmal defect, but rather imply a homeostatic response possibly related to the process of axonal atrophy. Giant axonal swellings were primarily associated with oral 2,5-hexane-dione intoxication, and corresponding analyses revealed few changes in element or water content compared with control. The absence of significant alterations in these swellings is consistent with mechanical expansion of the axon probably as a function of accumulating neurofilaments.  相似文献   

3.
X-ray microprobe analysis was used to determine concentrations (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in cellular compartments of frozen, unfixed sections of rat sciatic and tibial nerves and dorsal root ganglion (DRG). Five compartments were examined in peripheral nerve (axoplasm, mitochondria, myelin, extraaxonal space, and Schwann cell cytoplasm), and four were analyzed in DRG nerve cell bodies (cytoplasm, mitochondria, nucleus, and nucleolus). Each morphological compartment exhibited characteristic concentrations of elements. The extraaxonal space contained high concentrations of Na, Cl, and Ca, whereas intraaxonal compartments exhibited lower concentrations of these elements but relatively high K contents. Nerve axoplasm and axonal mitochondria had similar elemental profiles, and both compartments displayed proximodistal gradients of decreasing levels of K, Cl, and, to some extent, Na. Myelin had a selectively high P concentration with low levels of other elements. The elemental concentrations of Schwann cell cytoplasm and DRG were similar, but both were different from that of axoplasm, in that K and Cl were markedly lower whereas P was higher. DRG cell nuclei contained substantially higher K levels than cytoplasm. The subcellular distribution of elements was clearly shown by color-coded images generated by computer-directed digital x-ray imaging. The results of this study demonstrate characteristic elemental distributions for each anatomical compartment, which doubtless reflect nerve cell structure and function.  相似文献   

4.
In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon-glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.  相似文献   

5.
6.
The calcium-dependent, energy-independent incorporations of 14C-labeled bases, choline, ethanolamine, and serine, into their corresponding membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, were compared in microsomes and in subcellular fractions prepared from a lysed crude mitochondrial (P2) pellet of whole rat brain. When activities were measured in the presence of an extracellular (1.25 mM) concentration of Ca2+, recovered activities were highest in the microsomal fraction, although substantial activity remained associated with the P2 homogenate even after repeated washing of the pellet. When this washed P2 homogenate was subfractionated, enrichment of all three exchange activities was obtained only in a fraction that was fivefold enriched over the homogenate and sevenfold enriched over the microsomal fraction in Na+, K+-ATPase, a plasma membrane marker. This strongly suggests that the base-exchange enzymes are normal constituents of synaptosomal plasma membranes. The three exchange activities were measured in synaptosomes prepared from whole rat brain in the presence of various substrate (base) concentrations, and kinetic constants were calculated. The Vmax values for choline, ethanolamine, and serine exchange were, respectively, 1.27 +/- 0.09, 1.60 +/- 0.17, and 0.56 +/- 0.06 nmol/mg of protein/h; the respective Km (apparent) values were 241 +/- 29, 65 +/- 18, and 77 +/- 22 microM. Endogenous levels of the three bases, choline, ethanolamine, and serine, in whole (microwaved) rat brains were 20 +/- 8, 78 +/- 28, and 639 +/- 106 nmol, respectively. That ethanolamine and serine incorporations had lower Km values than choline incorporation suggests that these bases are preferentially incorporated into their respective phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The Expression of Nerve Growth Factor Receptor on Schwann Cells and the Effect of These Cells on Regeneration of Axons in Tra...  相似文献   

8.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

9.
The effects of sodium valproate (VPA; 100, 200, and 400 mg/kg, i.p.) on ventral hippocampal and anterior caudate putamen extracellular levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were examined using in vivo microdialysis. VPA induced dose-related increases in dialysate DA, 3,4-dihydroxyphenylacetic acid, and 5-HT in the ventral hippocampus. Anterior caudate putamen dialysate 5-HT was also dose dependently elevated by the drug, whereas DA levels tended to decrease with increasing VPA dose. In contrast, VPA (200, 400, and 800 mg/kg, i.p.) produced no significant elevation of DA in posterior caudate putamen dialysates, although 5-HT levels were significantly elevated at the 400- and 800-mg/kg doses. In all three regions studied, dialysate concentrations of 5-hydroxyindoleacetic acid and homovanillic acid remained at basal levels following VPA treatments. The results are discussed with regard to the possible anticonvulsant mode of action of VPA.  相似文献   

10.
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.  相似文献   

11.
Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1.  相似文献   

12.
Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10-12 N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation.  相似文献   

13.
Abstract: Brefeldin A (BFA) has been used extensively to study the intracellular transport and processing of proteins and sphingolipids because of its dramatic alteration of the structural and functional organization of the Golgi. We have examined the effect of BFA on the synthesis of galactosylceramide sulfate (SGalCer) and its immediate precursor galactosylceramide (GalCer) in an immortalized Schwann cell line (S16) to determine the intracellular sites of synthesis of these two related glycolipids. During a 6-h labeling period, a dose-dependent inhibition of [35S]sulfate incorporation into SGalCer was observed with 95% inhibition occurring at 0.5 µg/ml BFA. Labeling of newly synthesized galactosphingolipids with [3H]-palmitic acid for 6 h in the presence of BFA resulted in increased incorporation of label into GalCer containing nonhydroxy fatty acids (NFA-GalCer) to 162% of control values, whereas labeling of GalCer containing 2-hydroxy fatty acids (HFA-GalCer) was reduced to 63% of control. After 24 h, these values were at 366 and 91%, respectively. These results indicate that at least some of the HFA-GalCer was initially synthesized at a location distal to the BFA block and separate from the site of NFA-GalCer synthesis. Examination of [3H]palmitic acid incorporation into free ceramides showed an increase of 133 and 161% for hydroxy and nonhydroxy fatty acid ceramides, respectively, in cells treated for 6 h with BFA in comparison with levels found in untreated control cells, indicating that BFA did not block fatty acid 2-hydroxylation or the formation of HFA ceramide. Incorporation of [3H]palmitic acid into glucosylceramide and GM3 was increased over control levels whereas labeling of GM2 was inhibited, consistent with what has been reported previously for the effect of BFA on these glycolipids in other cell types. These results suggest that there are at least two separate intracellular sites for the galactosylation of HFA and NFA ceramide, respectively, which can be distinguished by their sensitivity to BFA. Our results also indicate that the site of GalCer sulfation is not redistributed to the endoplasmic reticulum in the presence of BFA and therefore may be localized to the distal Golgi or trans-Golgi network.  相似文献   

14.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review   总被引:2,自引:0,他引:2  
The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.  相似文献   

15.
The effects of nerve growth factor (NGF) and epidermal growth factor (EGF) on the intracellular accumulation of inositol phosphates and on cytosolic free Ca2+ concentrations were studied in rat PC12 pheochromocytoma cells. Both NGF and EGF potentiate in these cells the increase in the accumulation of inositol phosphates that is elicited by bradykinin and carbachol. A corresponding potentiation was also found for the agonist-induced increase of cytosolic Ca2+ concentrations. The effect of NGF, but not that of EGF, is abolished when the cells are preincubated with 5'-deoxy-5'-methylthioadenosine, an inhibitor of S-adenosylhomocysteine hydrolase. These results suggest that an increased response to hormones, which act via phosphoinositide-derived second messengers, may be important in the mechanism of action of NGF and EGF.  相似文献   

16.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

17.
The effect of adenosine regulation on sodium and chloride transport was examined in cultured A6 renal epithelial cells. Adenosine and its analogue N6-cyclopentyladenosine (CPA) had different effects on short-circuit current (I sc) depending on the side of addition. Basolateral CPA addition induced an approximately threefold increase of the I sc that reached a maximum effect 20 min after addition and was completely inhibited by preincubation with either an A2 selective antagonist, CSC, or the sodium channel blocker, amiloride. Apical CPA addition induced a biphasic I sc response characterized by a rapid fourfold transient increase over its baseline followed by a decline and a plateau phase that were amiloride insensitive. The A1 adenosine antagonist, CPX, completely prevented this response. This I sc response to apical CPA was also strongly reduced in Cl-free media and was significantly inhibited either by basolateral bumetanide or apical DPC preincubation. Only basolateral CPA addition was able to induce an increase in cAMP level. CPA, added to cells in suspension, caused a rapid rise in [Ca2+] i that was antagonized by CPX, not affected by CSC and prevented by thapsigargin preincubation. These data suggest that basolateral CPA regulates active sodium transport via A2 adenosine receptors stimulating adenylate cyclase while apical CPA regulates Cl secretion via A1 receptor-mediated changes in [Ca2+] i .  相似文献   

18.
Mitochondrial pyruvate-supported respiration was studied in vitro under conditions known to exist following ischemia, i.e., elevated extramitochondrial Ca2+, Na+, and peroxide. Ca2+ alone (7-10 nmol/mg) decreased state 3 and increased state 4 respiration to 81 and 141% of control values, respectively. Sodium (15 mM) and/or tert-butyl hydroperoxide (tBOOH; up to 2,000 nmol/mg protein) alone had no effect on respiration; however, Na+ or tBOOH in combination with Ca2+ dramatically altered respiration. Respiratory inhibition induced by Ca2+ and tBOOH does not involve pyruvate dehydrogenase (PDH) inhibition since PDH flux increased linearly with tBOOH concentration (R = 0.96). Calcium potentiated tBOOH-induced mitochondrial NAD(P)H oxidation and shifted the redox state of cytochrome b from 67 to 47% reduced. Calcium (5.5 nmol/mg) plus Na+ (15 mM) decreased state 3 and increased state 4 respiratory rates to 55 and 202% of control values, respectively. Sodium- as well as tBOOH-induced state 3 inhibition required mitochondrial Ca2+ uptake because ruthenium red addition before Ca2+ addition negated the effect. The increase in state 4 respiration involved Ca2+ cycling since ruthenium red immediately returned state 4 rates back to control values. The mechanisms for the observed Ca2(+)-, Na(+)-, and tBOOH-induced alterations in pyruvate-supported respiration in vitro are discussed and a multifactorial etiology for mitochondrial respiratory dysfunction following cerebral ischemia in vivo is proposed.  相似文献   

19.
The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of [3H]DA (10(-7) M) into slices of rat striatum was found to be greatly dependent (greater than 99%) on the presence of sodium ion in the incubation medium. However, the formation of the [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) was only partially reduced in the absence of sodium (DOPAC, 27% of control; HVA, 47% of control). Inhibition of carrier-mediated DA neuronal uptake with nomifensine (10(-5) M) significantly decreased DA accumulation (18% of control) and [3H]DOPAC formation (62% of control), but enhanced [3H]HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on [3H]DOPAC or [3H]HVA formed from [3H]DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.  相似文献   

20.
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 mM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 M decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 M increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 M decreased DOPAC. NMDA 500 M decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 M) blocked the effects of AMPA (100 M) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 M) blocked the effects of NMDA 500 M on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号