首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auxotrophic mutants of Hydrogenomonas eutropha and H. facilis requiring utilizable amino acids were employed to demonstrate the simultaneous utilization of H(2) and an organic substrate for growth. The ratio of the cell yields under dual substrate conditions compared to heterotrophic conditions indicated the relative contributions of the autotrophic and heterotrophic systems to the growth of the organism. Wildtype H. eutropha grown under simultaneous conditions exhibited a dicyclic growth pattern, the first cycle representing either heterotrophic or simultaneous growth and the second cycle representing autotrophic growth. The duration of the changeover period was either very short with no plateau or long with a plateau up to 8 hr, depending upon the organic substrate. The growth rate under simultaneous conditions with some organic substrates was faster than either the autotrophic or heterotrophic rate, but was not the sum of the two rates. The data suggest that, in the presence of both organic and inorganic substrates, heterotrophic metabolism functions normally but autotrophic metabolism is partially repressed.  相似文献   

2.
Two key autotrophic enzyme systems, hydrogenase and ribulose diphosphate carboxylase, were examined in Mycobacterium gordonae and two other chemolithotrophic, scotochromogenic mycobacteria under different cultural conditions. In all three organisms both enzymes were inducible and were produced in significant levels only in the presence of the specific substrate, hydrogen or carbon dioxide. M. gordonae exhibited increased growth rates and yields, indicating mixotrophic growth, in the presence of a number of single organic substrates, including acetate, pyruvate, glucose, fructose, and glycerol. In contrast to other aerobic hydrogen autotrophs, the presence of either acetate or pyruvate did not repress ribulose diphosphate carboxylase, and mixotrophic growth was rapid with these substrates. In the absence of carbon dioxide, growth in glycerol medium under an atmosphere of hydrogen and oxygen was severely inhibited, even with cells preadapted to heterotrophic growth on glycerol. Cyclic adenosine monophosphate was not effective in inducing hydrogenase or carboxylase in heterotrophic, mixotrophic, or hydrogen-inhibited cultures.  相似文献   

3.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

4.
Autotrophic growth yields of four strains of Sulfolobus using tetrathionate as sole energy substrate fell in the range 6.2–7.8 g dry weight (mol tetrathionate oxidized)-1. Autotrophic organisms lacked ribulose 1,5-bis-phosphate carboxylase, but contained pyruvate and phosphoenolpyruvate carboxylases. S. brierleyi and strains B6-2 and LM exhibited mixotrophic growth, with tetrathionate oxidation, CO2-fixation and organic substrate assimilation occurring concurrently, using media containing glucose or acetate. Yeast extract or succinate supported heterotrophic growth and showed strain-dependent repression of one or both of tetrathionate oxidation and CO2-fixation resulting in biphasic growth. All four carbon atoms of succinate were assimilated to cell-carbon during growth. Acetate was the major source of cell-carbon during mixotrophic growth. These observations are not inconsistent with the possibility of a reductive carboxylic acid cycle in these organisms. Radiorespirometric analysis of glucose oxidation indicated CO2 release to occur by means of an Entner-Doudoroff pathway (followed by pyruvate decarboxylation) and oxidative pentose phosphate pathway reactions. There was little evidence from the glucose radiorespirometry of the large-scale use of an oxidative tricarboxylic acid cycle for terminal oxidation of acetate derived from pyruvate. These results demonstrate the considerable metabolic versatility of Sulfolobus strains and show that there is significant variation among them.Abbreviations PIPES Piperazine-N,N-bis (2-ethane sulphonic acid)  相似文献   

5.
Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed.  相似文献   

6.
Phosphoribulokinase in Alcaligenes eutrophus was partially inactivated when an autotrophic culture was shifted to heterotrophic growth with pyruvate as the sole source of carbon and energy. A similar response was observed on addition of various organic substrates to autotrophic cultures during the transition to mixotrophic growth. The extent of inactivation depended on the added substrate. Pyruvate or lactate caused the strongest inactivation among the tested substrates. Up to 75% of the phosphoribulokinase activity found in the autotrophic cells was lost within 30 min after supplementation of the cultures with either of these two substrates. This loss of enzyme activity was not the result of degradation of enzyme protein. Inactivation of phosphoribulokinase was accompanied by a decrease in the CO2 fixation rate of the cells. Reactivation of the enzyme occurred after exhaustion of pyruvate from the medium. Neither inactivation nor reactivation required de novo protein synthesis; however, continued energy conversion was necessary for the inactivation to occur. We suggest that the pyruvate metabolism of A. eutrophus is involved in these regulatory processes which act on phosphoribulokinase. They appear to contribute to the control of autotrophic CO2 assimilation in this organism.  相似文献   

7.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

8.
Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.  相似文献   

9.
The moderately thermophilic acidophilic bacteria Sulfobacillus thermosulfidooxidans, strain 1269, S. thermosulfidooxidans subsp. "asporogenes," strain 41, and the thermotolerant strain S. thermosulfidooxidans subsp. "thermotolerans" K1 prefer mixotrophic growth conditions (the concomitant presence of ferrous iron, thiosulfate, and organic compounds in the medium). In heterotrophic and autotrophic growth conditions, these sulfobacilli can grow over only a few culture transfers. In cell-free extracts of these sulfobacilli, key enzymes of the Embden-Meyerhof-Parnas, pentose-phosphate, and Entner-Doudoroff pathways were found. The role of a particular pathway depended on the cultivation conditions. All of the enzymes assayed were most active under mixotrophic conditions in the presence of Fe2+ and glucose, suggesting the operation of all of the three major pathways of carbohydrate metabolism under these conditions. However, the operation of the Entner-Doudoroff pathway in strain 41 was restricted under mixotrophic conditions. After the first culture transfer from mixotrophic to heterotrophic conditions, the utilization of glucose occurred only via the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. After the first culture transfer from mixotrophic to autotrophic conditions, the activity of carbohydrate metabolism enzymes decreased in all of the strains studied; in strain K1, only the glycolytic pathway remained operative. The high activity of fructose-bisphosphate aldolase, remaining in strain 41 cells under these conditions, suggests the involvement of this enzyme in the reactions of the Calvin cycle or of gluconeogenesis.  相似文献   

10.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

11.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

12.
The anoxygenic green sulfur bacteria (GSBs) assimilate CO2 autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO2 or HCO3. It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during autotrophic and mixotrophic growth of the GSB Chlorobaculum tepidum. Our data indicate the following: (a) the RTCA cycle is active during autotrophic and mixotrophic growth; (b) the flux from pyruvate to acetyl-CoA is very low and acetyl-CoA is synthesized through the RTCA cycle and acetate assimilation; (c) pyruvate is largely assimilated through the RTCA cycle; and (d) acetate can be assimilated via both of the RTCA as well as the oxidative (forward) TCA (OTCA) cycle. The OTCA cycle revealed herein may explain better cell growth during mixotrophic growth with acetate, as energy is generated through the OTCA cycle. Furthermore, the genes specific for the OTCA cycle are either absent or down-regulated during phototrophic growth, implying that the OTCA cycle is not complete, and CO2 is required for the RTCA cycle to produce metabolites in the TCA cycle. Moreover, CO2 is essential for assimilating acetate and pyruvate through the CO2-anaplerotic pathway and pyruvate synthesis from acetyl-CoA.  相似文献   

13.
Chlorella sp. strain VJ79 was isolated from a total heterotrophic count of a wastewater collector. It grows autotrophically, heterotrophically, and mixotrophically on a variety of organic substrates. Glucose and serine promote a mixotrophic growth from which the yield is higher than the sum of autotrophic and heterotrophic yields, but serine assimilation requires light. The interaction of glucose and light was studied in proliferating and nonproliferating cells by respirometry (IRGA and Warburg) and growth experiments. Glucose inhibits the photosynthetic CO(2) fixation ten-fold and modifies the pigmentary system as it does in heterotrophic cultures. Light inhibits glucose uptake and assimilation, but under mixotrophic conditions maximal utilization of glucose is obtained. Mutants defective in autotrophic growth were isolated by mutagenesis with nitrosoguanidine. They show a degenerated pigmentary system and a mixotrophic growth yield equal to that of the heterotrophic growth. The analysis of the mixotrophic system shows that light energy, dissipated during autotrophic growth, is used under mixotrophic conditions. From the increase in growth, the increase in photosynthetic efficiency can be calculated as ca. sixfold.  相似文献   

14.
研究了3种有机碳对三角褐指藻生长、胞内物质和脂肪酸组分的影响。结果表明, 三角褐指藻具有利用有机碳进行兼养生长的能力, 生长速率加快, 倍增时间缩短, 生物量显著提高, 100 mmol/L甘油兼养的生物量最高(713 mg/L), 是自养(460 mg/L)的1.60倍, 乙酸钠和葡萄糖兼养的生物量分别是自养的1.28倍和1.21倍。兼养下蛋白质含量较自养明显下降, 碳水化合物和总脂含量高于自养, 乙酸钠和甘油兼养的总脂含量分别是自养的1.43倍和1.20倍, 葡萄糖兼养的总脂含量与自养无明显差异。3种有机碳兼养的饱和脂肪酸和单不饱和脂肪酸占总脂肪酸的比例增大, 多不饱和脂肪酸比例降低, EPA(eicosapentaenoic acid)比例降低, 乙酸钠兼养的胞内EPA含量(6.23%)和产量(36.59 mg/L)均高于自养, 分别是自养的1.10倍和1.40倍, 甘油和葡萄糖兼养的EPA含量和产量均低于自养。  相似文献   

15.
朱慧  符波  鲁帅领  刘宏波  刘和 《微生物学通报》2018,45(11):2320-2330
【背景】同型产乙酸菌是一类利用乙酰辅酶A途径固定CO_2合成自身细胞物质并生成乙酸、乙醇等代谢产物的厌氧菌群,其分布广泛、种类繁多且代谢多样。深入研究同型产乙酸菌菌株的代谢能力及特性,对探索该种群的生理生化特性及其环境作用至关重要。【目的】研究一株同型产乙酸菌Clostridium sp. BXX的最适培养条件及其自养与异养生长特性。【方法】设置BXX菌株培养温度10-55°C、初始pH 6.0-9.0、NaCl浓度0-2.0%、不同氮源,测定菌体细胞含量和产物生成浓度,确定菌株最适培养条件。研究BXX菌株分别以H_2/CO_2、合成气、CO、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚、甘油、丙酮酸和乳酸为底物时的底物消耗、产物生成、菌体细胞含量和pH等,探究其自养和异养生长特性。【结果】BXX菌株的最适培养温度为30°C,初始pH为7.0,NaCl浓度为1.0%,氮源为酵母粉。BXX菌株能以H2/CO2、合成气、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚和甘油为底物生长,不能以CO、丙酮酸或乳酸为底物生长。【结论】BXX菌株既能自养生长产乙酸,又能异养生长产乙醇。BXX菌株是乙酸发酵的优良菌种资源,有较好的工业应用潜力。  相似文献   

16.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

17.
Chlorella pyrenoidosa was cultivated under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. The influence of light on the carbon and energy metabolism of microalgae was investigated by the use of metabolic flux analysis. The respiratory activity of microalgae in the light was assessed from the autotrophic flux distribution. Results showed that the glycolytic pathway, tricarboxylic acid cycle and mitochondrial oxidative phosphorylation maintained high activities during illumination, indicating little effect of light on these pathways, while the flux through the pentose phosphate pathway during illumination was very small due to the light-mediated regulation. The theoretical yields of biomass on ATP decreased in the following order: heterotrophic culture>mixotrophic culture>autotrophic culture, and a significant amount of the available ATP was required for maintenance processes in microalgal cells. The energy conversion efficiency between the supplied energy to culture, the absorbed energy by cells and the free energy conserved in ATP were analyzed for the different cultures. Analysis showed that the heterotrophic culture generated more ATP from the supplied energy than the autotrophic and mixotrophic cultures. The maximum thermodynamic efficiency of ATP production from the absorbed energy, which was calculated from the metabolic fluxes at zero growth rate, was the highest in the heterotrophic culture and as low as 16% in the autotrophic culture. By evaluating the energy economy through the energy utilization efficiency, it was found that the biomass yield on the supplied energy was the lowest in the autotrophic cultivation, and the cyclic culture gave the most efficient utilization of energy for biomass production.  相似文献   

18.
During heterotrophic growth on acetate, in batch culture, the autotrophic growth potential of Thiobacillus A2, i.e. the capacity to oxidize thiosulfate and to fix carbon dioxide via the Calvin cycle, was completely repressed. The presence of thiosulfate in a batch culture with acetate as the organic substrate partly released the repression of the thiosulfate oxidizing system. Cultivation of the organism in continuous culture at a dilution rate of 0.05 h-1 with different concentration ratios of thiosulfate and acetate in the reservoir medium led to mixotrophic growth under dual substrate limitation. Growth on the different mixtures of acetate and thiosulfate yielded upto 30% more cell dry weight than predicted from the growth yields on comparable amounts of these substrates separately. The extent to which the carbon dioxide fixation capacity and the maximum thiosulfate and acetate oxidation capacity are repressed appeared to be a function of the thiosulfate to acetate concentration ratio in the reservoir medium. The results of 14C-acetate assimilation experiments and of gas-analysis demonstrated that the extent to which acetate was assimilated depended also on the substrate ratio in the inflowing medium. Under the different growth conditions surprisingly little variation was found in some tri-carboxylic acid cycle enzyme activities. Cultivation of T. A2 at different growth rates with a fixed mixture of thiosulfate (18 mM) and acetate (11 mM) in the medium, showed that dual substrate limitation occured at dilution rates ranging from 0.03–0.20 h-1.Abbreviations PPO 2,5-diphenoloxazol - RubPCase Ribulose-1,5-bisphophate carboxylase - Tris tris (hydroxymethyl) aminomethane - EDTA ethylenediaminetetra-acetic acid  相似文献   

19.
The metabolic theory of ecology predicts that temperature affects heterotrophic processes more strongly than autotrophic processes. We hypothesized that this differential temperature response may shift mixotrophic organisms towards more heterotrophic nutrition with rising temperature. The hypothesis was tested in experiments with the mixotrophic chrysophyte Ochromonas sp., grown under autotrophic, mixotrophic and heterotrophic conditions. Our results show that (1) grazing rates on bacterial prey increased more strongly with temperature than photosynthetic electron transport rates, (2) heterotrophic growth rates increased exponentially with temperature over the entire range from 13 to 33 °C, while autotrophic growth rates reached a maximum at intermediate temperatures and (3) chlorophyll contents during mixotrophic growth decreased at high temperature. Hence, the contribution of photosynthesis to mixotrophic growth strongly decreased with temperature. These findings support the hypothesis that mixotrophs become more heterotrophic with rising temperature, which alters their functional role in food webs and the carbon cycle.  相似文献   

20.
Mixotrophic Growth of Hydrogenomonas eutropha   总被引:1,自引:0,他引:1  
Mixotrophic growth conditions were established by the addition of lactate to cultures of Hydrogenomonas eutropha growing autotrophically in a gaseous environment of H(2), O(2), and CO(2) (6:2:1). The specific growth rate of mixotrophic cultures was double that of the autotrophic cultures, and lactate disappearance paralleled growth. Growth yields in mixotrophic cultures were significantly greater than those in heterotrophic cultures for equal quantities of lactate consumed. The magnitude of the increase in yield was directly proportional to the absolute growth rate at the time of lactate addition to the starting autotrophic culture and to the time under mixotrophic conditions. The specific activities of hydrogenase and ribulose diphosphate carboxylase decreased during mixotrophic growth; the total activities increased somewhat. The results suggested that the complete autotrophic and heterotrophic physiologies functioned simultaneously under mixotrophic contions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号