首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
代谢工程改造运动发酵单胞菌用于提高乙醇产量   总被引:1,自引:0,他引:1  
目的:采用可以在运动发酵单胞菌中表达的操纵子构建重组运动发酵单胞菌,用于提高该细菌对高温高糖的耐受性和提高乙醇产量.方法:用外来的YfdZ、MetB和Hsp构建的多顺反子质粒,转化运动发酵单胞菌而使其获得新的代谢途径.在玉米水解液中,验证了该多顺反子质粒对运动发酵单胞菌产生乙醇的影响.结果:与对照菌相比,在37℃和糖浓度为28%的培养条件下,该基因工程菌的乙醇产量提高到183.2%.在37℃,糖浓度为28%并添加氮源的条件下,该基因工程菌的乙醇产量提高到148.0%.结论:YfdZ、MetB及Hsp三种基因的共同作用能显著提高运动发酵单胞菌的乙醇产量和发酵温度.  相似文献   

2.
目的:对基因改造运动发酵单胞菌的发酵工艺条件进行优化,提高重组菌发酵乙醇产量。方法:使用分子克隆实验操作技术构建重组运动发酵单胞菌,以单因素实验为基础,利用Box-Behnken中心组合实验和响应面分析法,确定了影响重组菌高产乙醇的三个重要因素。结果:成功构建含有YfdZ、MetB基因和Hsp基因的重组菌Zymomonas mobilis HYM,发酵主要影响因素的最佳条件分别为温度28℃,葡萄糖浓度24%(W/V),pH7.4。在此优化条件下,Zymomonas mobilis HYM的乙醇产量可高达105.0735g/l,比原始菌株乙醇产量提高16.4%。结论:用中心组合设计和响应面分析法优化重组运动发酵单胞菌的发酵工艺条件,显著提高乙醇产量。  相似文献   

3.
本研究运用半定量RT-PCR法检测运动发酵单胞菌重组菌中外源基因xylB的转录水平。提取野生型运动发酵单胞菌CP4及其2个重组菌的总RNA, 检测无DNA污染后定量至同一浓度、并反转录为cDNA。观测目的基因xylB和内标基因16S rRNA的PCR扩增曲线、并确定合适的循环数, 选用相同量的cDNA为模板, PCR检测各样本中xylB相对16S rRNA的转录水平。结果表明野生型菌株CP4中xylB基因没有转录, 而两株重组菌中皆有xylB的转录本, 且转录丰度基本一致, 酶活测定也进一步证实该基因在重组菌中有效表达。该方法可用于鉴定运动发酵单胞菌中特定基因的转录水平, 是一种快速有效的检测方法。  相似文献   

4.
重组运动发酵单胞菌的构建及木糖利用特性研究   总被引:2,自引:0,他引:2  
将大肠杆菌(Escherichia coli)木糖代谢的关键酶基因.引入到运动发酵单胞菌中,获得能利用木糖发酵生产乙醇的重组工程菌株PZM.混合糖发酵过程中,重组菌利用葡萄糖和木糖生成乙醇的效率分别达到理论值的81.2%和63.1%.  相似文献   

5.
透明颤菌血红蛋白基因在产PHB重组大肠杆菌中的引入   总被引:2,自引:0,他引:2  
将透明颤菌血红蛋白基因 (vgb)采用插入染色体的方式引入产聚 β 羟基丁酸酯(PHB)重组大肠杆菌VG1 (pTU1 4)中 ,以从分子水平上提高克隆菌对氧的利用率 ,解决PHB发酵生产过程中的供氧矛盾 ,透明颤菌血红蛋白的一氧化碳差光谱分析明表 ,vgb基因可以在VG1 (pTU1 4)中成功表达 ,且其表达量受溶氧水平的调控。Vgb基因的引入可以同时促进菌体生长和PHB产品的积累 ,且溶氧水平越低 ,VHB表达量越高 ,这种促进作用就越明显  相似文献   

6.
能利用五碳糖和六碳糖生产乙醇的基因工程菌菌株的构建   总被引:5,自引:0,他引:5  
燃料乙醇是一种极具前景的燃油代用品,近年来发展尤为迅速,为了推广这种能源和满足日益增长的需求,我们有必要开发更为高效的生产工艺和寻找更为廉价的原料。解决此问题的关键在于获得高效的工程菌,使其能利用木质纤维素水解液中的五碳糖和六碳糖发酵生产乙醇。通过代谢工程的研究和基因重组技术,几种重组细菌显示出良好的开发前景,它们是运动发酵单胞菌、大肠杆菌、产酸克雷伯氏菌和菊欧文氏菌。本文就这四种细菌的研究进展以及基因重组过程进行了介绍和评价。  相似文献   

7.
为获得燃料乙醇生产菌株,通过基因工程改造,构建能够利用能源甘蔗汁发酵、乙醇产率高的酿酒酵母工程菌株。即过表达肌醇-3-磷酸合成酶基因ino1,敲除kanMX抗性基因,获得重组菌。对过表达菌株的乙醇耐受性进行分析。利用甘蔗汁进行发酵培养,采用气相色谱(GC)对发酵产物乙醇进行检测。结果显示过表达菌株YI2-1能够耐19%(V/V)的乙醇,利用20oBx甘蔗汁厌氧发酵乙醇积累量为13.10%(V/V),较出发菌提高了8.55%。而过表达菌株YI2-1△KP的最大乙醇积累量为13.17%(V/V),较出发菌提高了9.16%。研究表明通过过表达酿酒酵母ino1基因能够有效提高菌株细胞活力、乙醇耐受性。构建的工程菌可利用甘蔗汁发酵,具有较高的乙醇产量。  相似文献   

8.
木糖是纤维素原料水解液中最主要的五碳糖成分,由于野生的酿酒酵母缺乏有效的木糖利用途径,将外源木糖代谢途径整合至酿酒酵母中使其具有发酵木糖生产乙醇的能力是构建纤维素乙醇发酵菌株的关键。国内外学者的研究表明,同一木糖代谢途径导入不同酿酒酵母菌株中,所得到的重组菌发酵性能存在明显差异,表明宿主的遗传背景对菌株利用木糖能力和发酵性能具有重要的影响。就酿酒酵母宿主对重组菌株的木糖发酵性能的影响进行了综述,分析了产生宿主差异的内在机理,为进一步选育高效木糖共发酵菌种提供借鉴。  相似文献   

9.
以运动发酵单胞菌(Zymomonas mobilis)的总DNA为模板,PCR扩增运动发酵单胞菌中的丙酮酸脱羧酶( Pyruvate decarboxylase,PDC)基因和乙醇脱氢酶Ⅱ(Alcohol dehydrogenaseⅡ,ADHⅡ)基因.将丙酮酸脱羧酶基因和含核糖体结合位点(RBS)的乙醇脱氢酶基因串联起来置于T7启动子控制下,构成多顺反子表达质粒pQR-PRA.经酶切和PCR验证,表达载体构建成功.将pQR-PRA转入大肠埃希菌(Escherichia coli)BL21中,转化子的定性检测表明有酶表达,并且初步测定了2种酶的表达量.  相似文献   

10.
以运动发酵单胞菌(Zymomonas mobilis)CP4基因组DNA为模板,采用PCR技术克隆得到其丙酮酸脱氢酶基因(pdc)同源下游p3片段,并连接到广谱宿主载体pBBR1MCS3-Ppdc-ldhL中构建了重组质粒pBBR1MCS3-Ppdc-ldhL-p3,将此重组质粒转化到受体菌Z.mobilis CP4中,分别以Ppdc和p3片段作为同源上游和下游片段,利用同源双交换重组技术将重组质粒中的ldhL基因置换了Z.mobilis染色体中的pdc基因,得到重组菌株Z.mobilis CP4(△pdc∷ldhL).测得重组菌株乳酸产量为10.8g/L,明显高于出发菌株,说明初步成功构建了产L-乳酸的运动发酵单胞菌代谢工程菌株.  相似文献   

11.
12.
A recombinant plasmid was constructed by ligating EcoRI digests of the plasmid cloning vector pBR325 and pZMO2, one of the natural plasmids of Zymomonas mobilis ATCC 10988. This vector, named pDS212 (total size 7.9 kb), which was able to transform Escherichia coli efficiently, was also transferred to Z. mobilis hosts by mobilization during conjugation using the helper plasmid pRK2013. pDS212 was inherited stably in both E. coli and Z. mobilis hosts and could be recovered intact from them. Markers of pBR325 and pRK2013 were also transferred in Z. mobilis but at very low frequencies. Neither pBR325 nor pRK2013 could be recovered intact from the Z. mobilis hosts. It is proposed that expression and stability of pDS212 in Z. mobilis is due to the origin of replication of pZMO2 that it carries, and that it may be used for developing a gene transfer system in Z. mobilis.  相似文献   

13.
14.
S ummary . During the course of an investigation of Zymomonas spp. in the brewing industry, a strain was isolated from different habitats and identified as Z. mobilis. It is the first occasion on which this species has been isolated from British beers. Closer examination of one isolate showed that it was different from the stock strain of Z. mobilis , both in vitamin requirements and serology. Strains of Z. anaerobia were also isolated and it was possible to induce these bacteria to metabolize sucrose. Since the ability to utilize this sugar is one of the major differences between Z. mobilis and Z. anaerobia , and in view of the closeness of the G + C ratios, the whole question of whether 2 species of Zymomonas are justified is thrown into doubt.  相似文献   

15.
16.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

17.
Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses.  相似文献   

18.
Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome.  相似文献   

19.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

20.
Wild-type Zymomonas mobilis can utilize only three substrates (sucrose, glucose, and fructose) as sole carbon sources, which are largely converted into ethanol and carbon dioxide. Here, we show that although D-mannose is not used as a growth substrate, it is taken up via the glucose uniport system (glucose facilitator protein) with a Vmax similar to that of glucose. Moreover, D-mannose was phosphorylated by a side activity of the resident fructokinase to mannose-6-phosphate. Fructokinase was purified to homogeneity from an frk-recombinant Z. mobilis strain showing a specific activity of 205 +/- 25 U of protein mg-1 with fructose (K(m), 0.75 +/- 0.06 mM) and 17 +/- 2 U mg-1 (relative activity, 8.5%) with mannose (K(m), 0.65 +/- 0.08 mM). However, no phosphomannoseisomerase activity could be detected for Z. mobilis, and this appeared to be the reason for the lack of growth on mannose. Therefore, we introduced the Escherichia coli gene pmi (manA) in Z. mobilis under the control of a lacIq-Ptac system on a broad-host-range plasmid (pZY507; Cmr). Subsequently, in pmi-recombinant cells of Z. mobilis, phosphomannoseisomerase was expressed in a range of from 3 U (without isopropyl-beta-D-thiogalactopyranoside [IPTG]) to 20 U mg-1 of protein in crude extracts (after IPTG induction). Recombinant cells of different Z. mobilis strains utilized mannose (4%) as the sole carbon source with a growth rate of 0.07 h-1, provided that they contained fructokinase activity. When the frk gene was additionally expressed from the same vector, fructokinase activities of as much as 9.7 U mg-1 and growth rates of as much as 0.25 h-1 were detected, compared with 0.34 h-1 on fructose for wild-type Z. mobilis. Selection for growth on mannose was used to monitor plasmid transfer of pZY507pmi from E. coli to Z. mobilis strains and could replace the previous selection for antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号