首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm are particularly prone to oxidative damage because they generate reactive oxygen species (ROS), have a high polyunsaturated fat content and a reduced capacity to repair DNA damage. The dietary compounds vitamin E and beta-carotene are argued to have antioxidant properties that help to counter the damaging effects of excess ROS. Here in, we tested the post-copulatory consequences for male crickets (Teleogryllus oceanicus) of dietary intake of these two candidate antioxidants. During competitive fertilisation trials, vitamin E, but not beta-carotene, singularly enhanced sperm competitiveness. However, the diet combining a high vitamin E dose and beta-carotene produced males with the most competitive ejaculates, possibly due to the known ability of beta-carotene to recycle vitamin E. Our results provide support for the idea that these two common dietary compounds have interactive antioxidant properties in vivo, by affecting the outcomes of male reproductive success under competitive conditions.  相似文献   

2.
Oxidative stress imposed by reactive oxygen species (ROS) plays a crucial role in the pathophysiology associated with neoplasia, atherosclerosis, and neurodegenerative diseases. The ROS-induced development of cancer involves malignant transformation due to altered gene expression through epigenetic mechanisms as well as DNA mutations. Considerable attention has been focused on identifying naturally occurring antioxidative phenolic phytochemicals that are able to decrease ROS levels, but the efficacies of antioxidant therapies have been equivocal at best. Several studies have shown that some antioxidants exhibit prooxidant activity under certain conditions and potential carcinogenicity under others, and that dietary supplementation with large amounts of a single antioxidant may be deleterious to human health. This article reviews the intracellular signaling pathways that respond to oxidative stress and how they are modulated by naturally occurring polyphenols. The possible toxicity and carcinogenicity of polyphenols is also discussed.  相似文献   

3.
All definitions of the terms ‘oxidative stress’ and ‘antioxidants’ implicate that oxidants are just damaging. However, there is increasing evidence that reactive oxygen species (ROS) are not only toxic but that we need them for healthy life. This change in paradigm has been discussed at the third international symposium on ‘Nutrition, oxygen biology and medicine—micronutrients, exercise, energy and aging disorders’, of the Society for Free Radical Research France and the Oxygen Club of California on April 8–10, 2009 in Paris. The beneficial effect of a low to moderate concentration of oxidants produced during exercise was taken as most discussed example. In this case, ROS are required for normal force production in skeletal muscle, for the development of training-induced adaptation in endurance performance, as well as for the induction of endogenous defense systems. Taking antioxidants during training prevents adaptation. Although substantial progress on the understanding of the physiological functions of ROS was communicated at the meeting, it remained obvious that a lot of work is needed to fully understand the conditions and individual situations under which ROS are beneficial or detrimental.  相似文献   

4.
Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.  相似文献   

5.
Early nutrition has recently been shown to have pervasive, downstream effects on adult life-history parameters including lifespan, but the underlying mechanisms remain poorly understood. Damage to biomolecules caused by oxidants, such as free radicals generated during metabolic processes, is widely recognized as a key contributor to somatic degeneration and the rate of ageing. Lipophilic antioxidants (carotenoids, vitamins A and E) are an important component of vertebrate defences against such damage. By using an avian model, we show here that independent of later nutrition, individuals experiencing a short period of low-quality nutrition during the nestling period had a twofold reduction in plasma levels of these antioxidants at adulthood. We found no effects on adult external morphology or sexual attractiveness: in mate-choice trials females did not discriminate between adult males that had received standard- or lower-quality diet as neonates. Our results suggest low-quality neonatal nutrition resulted in a long-term impairment in the capacity to assimilate dietary antioxidants, thereby setting up a need to trade off the requirement for antioxidant activity against the need to maintain morphological development and sexual attractiveness. Such state-dependent trade-offs could underpin the link between early nutrition and senescence.  相似文献   

6.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   

7.
Total Antioxidant Capacity (TAC) considers the cumulative action of all the antioxidants present in plasma and body fluids, thus providing an integrated parameter rather than the simple sum of measurable antioxidants. The capacity of known and unknown antioxidants and their synergistic interaction is, therefore, assessed, thus giving an insight into the delicate balance in vivo between oxidants and antioxidants. There is new evidence indicating the importance of understanding the mechanisms of the homeostatic control of TAC in plasma and tissues and its modification during oxidative stress development. Recently, the epidemiological application of TAC has been proposed as a new tool for investigating the relationship between dietary antioxidants and cancer risk in population studies. This review outlines the pros and cons of the more common assays for measuring plasma TAC and the latest findings on dietary modulation of plasma redox status. Finally, the feasibility of the 'TAC concept' as an innovative tool for investigating the association between diet and oxidative stress is discussed.  相似文献   

8.
Various neurodegenerative disorders and syndromes are associated with oxidative stress. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species (ROS) have been intensively studied in Alzheimer's disease (AD). Neuronal cell dysfunction and oxidative cell death caused by the AD-associated amyloid beta protein may causally contribute to the pathogenesis of AD. Antioxidants that prevent the detrimental consequences of ROS are consequently considered to be a promising approach to neuroprotection. While there is ample experimental evidence demonstrating neuroprotective activities of antioxidants in vitro, the clinical evidence that antioxidant compounds act as protective drugs is still relatively scarce. Nevertheless, antioxidants constitute a major part of the panel of clinical and experimental drugs that are currently considered for AD prevention and therapy. Here, focus is put mainly on phenolic antioxidant structures that belong to the class of direct antioxidants. Experimental and clinical evidence for the neuroprotective potential of alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) is shortly summarized and an outlook is given on possible novel antioxidant lead structures with improved pharmacological features.  相似文献   

9.
Herbal antioxidants are gradually gaining importance as dietary supplements considering the growing implications of oxidative stress in most degenerative diseases and aging. Thus, continuous attempts are made to search for novel herbal molecules with antioxidative properties, using chemical methods predominantly with the need arising for cell based assays. We have generated a stable cell line F-HABP07, by constitutively overexpressing human Hyaluronan Binding Protein1 (HABP1) in murine fibroblasts which accumulates in the mitochondria leading to excess ROS generation without any external stimuli. In the present study, we demonstrated the nuclear translocation of p65 subunit of NF-κB in F-HABP07 cells, an important signature of ROS induced signalling cascade providing us an opportunity to use it as a screening system for ROS scavengers. Using known antioxidants on our designer cell line, we have demonstrated a dose dependant reduction in ROS generation and observed inhibition of p65 subunit of NF-κB nuclear translocation, increase in glutathione content and down-regulation of apoptotic marker Bax establishing its antioxidant biosensing capacity. With the help of this cell line, we for the first time demonstrated serpentine, one of the active components from the roots of Rauwolfia serpentina (a traditional medicinal plant), to be a novel non-cytotoxic antioxidant. The authenticity of this cell line screening system based discovery was validated using standard chemical assays thus, opening up new therapeutic avenues for this herbal compound and the use of this designer cell line.  相似文献   

10.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   

11.
Reactive oxygen species (ROS) modulate aging and aging-related diseases. Dietary composition is critical in modulating lifespan. However, how ROS modulate dietary effects on lifespan remains poorly understood. Superoxide dismutase 1 (SOD1) is a major cytosolic enzyme responsible for scavenging superoxides. Here we investigated the role of SOD1 in lifespan modulation by diet in Drosophila. We found that a high sugar-low protein (HS-LP) diet or low-calorie diet with low-sugar content, representing protein restriction, increased lifespan but not resistance to acute oxidative stress in wild-type flies, relative to a standard base diet. A low sugar-high protein diet had an opposite effect. Our genetic analysis indicated that SOD1 overexpression or dfoxo deletion did not alter lifespan patterns of flies responding to diets. However, sod1 reduction blunted lifespan extension by the HS-LP diet but not the low-calorie diet. HS-LP and low-calorie diets both reduced target of rapamycin (TOR) signaling and only the HS-LP diet increased oxidative damage. sod1 knockdown did not affect phosphorylation of S6 kinase, suggesting that SOD1 acts in parallel with or downstream of TOR signaling. Surprisingly, rapamycin decreased lifespan in sod1 mutant but not wild-type males fed the standard, HS-LP, and low-calorie diets, whereas antioxidant N-acetylcysteine only increased lifespan in sod1 mutant males fed the HS-LP diet, when compared to diet-matched controls. Our findings suggest that SOD1 is required for lifespan extension by protein restriction only when dietary sugar is high and support the context-dependent role of ROS in aging and caution the use of rapamycin and antioxidants in aging interventions.  相似文献   

12.
Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.  相似文献   

13.
《Free radical research》2013,47(11-12):1279-1288
Abstract

Herbal antioxidants are gradually gaining importance as dietary supplements considering the growing implications of oxidative stress in most degenerative diseases and aging. Thus, continuous attempts are made to search for novel herbal molecules with antioxidative properties, using chemical methods predominantly with the need arising for cell based assays. We have generated a stable cell line F-HABP07, by constitutively overexpressing human Hyaluronan Binding Protein1 (HABP1) in murine fibroblasts which accumulates in the mitochondria leading to excess ROS generation without any external stimuli. In the present study, we demonstrated the nuclear translocation of p65 subunit of NF-κB in F-HABP07 cells, an important signature of ROS induced signalling cascade providing us an opportunity to use it as a screening system for ROS scavengers. Using known antioxidants on our designer cell line, we have demonstrated a dose dependant reduction in ROS generation and observed inhibition of p65 subunit of NF-κB nuclear translocation, increase in glutathione content and down-regulation of apoptotic marker Bax establishing its antioxidant biosensing capacity. With the help of this cell line, we for the first time demonstrated serpentine, one of the active components from the roots of Rauwolfia serpentina (a traditional medicinal plant), to be a novel non-cytotoxic antioxidant. The authenticity of this cell line screening system based discovery was validated using standard chemical assays thus, opening up new therapeutic avenues for this herbal compound and the use of this designer cell line.  相似文献   

14.
Oxidative stress is an important factor in causing aging and age-related diseases. It is caused by an imbalance between oxidants such as reactive oxygen species (ROS) and antioxidants. Protein oxidation elicited by free radicals may cause protein function disruptions. Protein carbonylation, an irreversible process resulting in loss of function of the modified proteins, is a widely used marker for oxidative stress. In the present study, we have evaluated the levels of protein carbonyls, ROS, and catalase in the cerebral hemispheres of young and aged mice. When aged mice were subjected to a dietary restriction (DR) regimen (alternate days feeding) of 3 months, a significant reduction in the endogenous levels of protein carbonylation as well as ROS and elevation of catalase was observed in their cerebral hemispheres. The present study, thus, demonstrated the antioxidative effects of late-onset DR regimen in the cerebral hemispheres of aged mice which may act as a powerful modulator of age-related neurodegenerative diseases.  相似文献   

15.
Insects possess a suite of antioxidant enzymes and small molecular weight antioxidants that may form a concatenated response to an onslaught of dietary and endogenously produced oxidants. Antioxidant enzymes such as superoxide dismutase, catalase, glutathione transferase, and glutathione reductase have been characterized in insects. Water-soluble and lipid-soluble antioxidants such as ascorbate, glutathione, tocopherols, and carotenoids have not been well studied in insects but may play very important antioxidant roles. Additionally, the peritrophic matrix and trehalose may possess important antioxidant functions in insects. The enzymatic recycling of ascorbate, first noted in green plants, may also exist in insects. A greater understanding of these antioxidant systems may provide greater understanding about the ecological relationships of insects with their hosts. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The aim of this review is to present an outline of the physiological perspectives of beneficial antioxidant production in fruit. The drive to enhance the consumption of fruit and vegetables in the human diet is linked with positive effects of beneficial antioxidants impacting on health promotion. We briefly outline our physiological understanding of environmental processes which induce the production of reactive oxygen species and how antioxidants prevent plant cellular damage. More specifically, we describe the impact that environmental stresses, such as drought and radiation, have on the production of endogenous antioxidants and how these stresses can be incorporated into novel experimental crop growing systems to achieve high antioxidant concentrations in fruits. This includes in particular the use of irrigation application techniques and enhanced light reflectance to increase the concentrations of bioactive compounds such as ellagic acid and ascorbic acid.  相似文献   

17.
Characteristics of both deliberately added and "cryptic" antioxidants were assayed from hydrophilic and lipophilic extracts from artificial diets for plant bugs, lepidopteran larvae, and green lacewings. Cryptic antioxidants are defined as substances naturally existing in diet ingredients but not deliberately added because of their antioxidant potential. Diets were tested after 1) being freshly produced, 2) stored for 48 h at 4 degrees C, or 3) held for 48 h under rearing room conditions at 27 degrees C. Tests included 1) a general assay of antioxidant capacity known as the ferric-reducing antioxidant power (FRAP) assay. 2) a cation radical-scavenging assay, 3) an ascorbic acid assay, and 4) an assay of inhibition of lipid peroxidation. In all assays, the lepidopteran diet had the highest values for protection against reactive oxygen species (ROS). The lepidopteran diet (with 0.17-0.23-mg equivalents of gallic acid equals total phenolic compounds per gram of diet) had three- to four-fold higher concentrations of phenolic compounds than did either the plant bug diet or the lacewing diet. Unexpectedly, the plant bug and the lacewing diets caused more lipid peroxidation than did the positive controls. This was attributed to the high concentrations of iron in these diets (mainly from chicken eggs), causing an ascorbate-ferric ion-induced lipid peroxidation. Diet storage, measured after 2 d at 27 or 4-6 degrees C, caused no significant declines in overall antioxidant potential. However, storage did lead to decline in ascorbic acid. The FRAP assay offered the best potential as a general, routine test of the potential of various insect diets to resist the destructive effects of ROS. The importance of addressing issues of protection against ROS in insect diets is discussed.  相似文献   

18.
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

19.
Antioxidants located in both the hydrophilic and lipophilic compartments of plasma are actively involved as a defense system against reactive oxygen species (ROS), which are continuously generated in the body due to both normal metabolism and disease. However, when the production of ROS is not controlled, it leads to cellular lipid, protein, and DNA damage in biological systems. Several assays to measure 'total' antioxidant capacity of plasma have been developed to study the involvement of oxidative stress in pathological conditions and to evaluate the functional bioavailability of dietary antioxidants. Conventional assays to determine antioxidant capacity primarily measure the antioxidant capacity in the aqueous compartment of plasma. Consequently, water-soluble antioxidants such as ascorbic acid, uric acid and protein thiols mainly influence these assays, whereas fat-soluble antioxidants such as tocopherols and carotenoids play only a minor role. However, there are active interactions among antioxidants located in the hydrophilic and lipophilic compartments of plasma. Therefore, new approaches to define the 'true' total antioxidant capacity of plasma should reflect the antioxidant network between water- and fat-soluble antioxidants in plasma. Revelation of the mechanism of action of antioxidants and their true antioxidant potential will help us to optimize the antioxidant defenses in the body.  相似文献   

20.
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain vascular tone and vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号