首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this paper we discuss uniform persistence (UP) criteria of two prey- one predator systems, where we consider that the predator's diet selection is a sigmoidal function of the most profitable prey type in place of a step function of conventional diet choice theory. We also derive UP results of the system with direct interspecific competition between the prey. The role of the most profitable prey item as a keystone species, the magnitude of its carrying capacity, the ability to withstand predation of both prey species, and the ratios of their profitability values (to predators) are important to whether or not adaptive foraging may promote UP. In general, foraging decision rules play no role in UP if the alternative prey item is the keystone species. The result is also not affected by the effect of direct competitive coexistence or dominance relationship of the prey. In some cases, dominance of one of the prey species provides the most advantageous situation for ensuring UP. Received: 1 February 1999 / Revised version: 20 September 1999 / Published online: 4 July 2000  相似文献   

2.
Optimal foraging theory predicts less diverse predator diets with a greater availability of preferred prey. This narrow diet niche should then be dominated by preferred prey, with implications for predator–prey dynamics and prey population ecology. We investigated lion (Panthera leo) diets in Hluhluwe–iMfolozi Park (HiP), South Africa, to assess whether lions in a site with a high density of preferred prey (prey species weighing 92–632 kg as estimated from a published meta-analysis) have a narrow diet, consisting primarily of preferred prey. HiP is a useful study site to investigate this prediction because it is a productive landscape (with a high density of prey) where lion-preferred prey constitutes up to 33% of the prey available to lions. Furthermore, to investigate whether lions in HiP exhibit sex-specific diets as documented in other southern African populations, we estimated male and female lion diets separately. We were specifically interested in testing whether traditional approaches of estimating lion diets at the population level mask sex-specific predation patterns, with possible implications for management of lions in small to medium-sized fenced reserves. Lions in HiP preferred larger prey species (63–684 kg) and had diets with a larger proportion of preferred prey than reported in an African-wide meta-analysis. However, despite the high density of preferred prey species, 36% of lion diets still consisted of typically non-preferred species such as nyala (Tragelaphus angasii). This finding suggests that lions in HiP maintain a degree of opportunism even when preferred prey are abundant. Therefore, abundant, non-preferred prey are likely to be an important resource for lion populations. Sex-specific differences in lion diets were evident in HiP, suggesting that estimation of lion resource use and carrying capacity should consider opportunistic hunting and sex-specific differences in lion diets.  相似文献   

3.
Summary Decisions made as to what prey types to include in the diet were analysed for two populations of the spider,Agelenopsis aperta existing under markedly different prey availability and predation levels. Potential prey types were ranked as to their relative profitabilities with respect to energy gain per handling effort and predation risk. Members of the population experiencing limited prey availability but low risk of predation to visually hunting predators exhibited a significantly higher capture attempt rate towards all prey encountered than the population for which prey were abundant but for which predation was a significant problem. Neither spider population preferentially attacked prey that exhibited higher profitability rankings. An experiment was completed that indicates thatA. aperta can discriminate between more and less profitable prey. Suggestions are made as to why the population experiencing abundant food did not exhibit a narrower diet when compared to the population existing under limited food.  相似文献   

4.
Recent decline in the lesser scaup Aythya affinis population has been linked to changes in wetland conditions along their spring migration routes. In particular, the use of amphipod prey by lesser scaup has declined in many regions of the upper Midwest U.S.A. and has been linked to expanded fisheries, although empirical data on diet overlap are lacking. To explore patterns of prey use by lesser scaup and diet overlap with fishes, we quantified diets of scaup and fishes during the 2003 and 2004 spring migration in eastern South Dakota, U.S.A. We compared diet overlap between lesser scaup and fishes collected from Twin Lakes, South Dakota—an important stopover location for spring-migrating scaup. Plant seeds occurred in >95% of lesser scaup diets (n = 118) and represented an appreciable amount of consumed biomass (>70%). Gastropods, amphipods, and chironomids were the most abundant invertebrate prey taxa and occurred in 29–34% of lesser scaup diets. Although relatively frequent, these taxa each contributed only 4–27% of the diet by weight. Percent dry mass of amphipods, a preferred prey by lesser scaup, was low (4%) indicating that amphipod availability may be reduced during spring migration. Analysis of fish diets showed that black bullhead Ameiurus melas and yellow perch Perca flavescens had the highest diet overlap with lesser scaup at 94% and 92%, respectively. Moreover, mean size of amphipods and chironomids found in fish diets were significantly larger than that consumed by lesser scaup. Our findings support the notion that amphipod use by spring-migrating lesser scaup has declined and that size-selective predation by fishes may influence prey availability for lesser scaup. Handling editor: K. Martens  相似文献   

5.
《Animal behaviour》1986,34(2):536-544
Current models of the optimal diet are special cases of a more general (and complex) model which incorporates the effects of predation risk on diet selection; this follows from an assumption implicit in current models that all prey items are eaten where they are encountered. Relaxing this assumption so that a forager might carry a prey item to protective cover for consumption leads to the conclusion that the value of a prey item is a function of its distance to cover as well as its energy content and handling time. Such considerations can significantly alter the outcome of diet selection relative to that expected from simple diet theory. We found that grey squirrels (Sciurus carolinensis) may reject more energetically profitable, but small food items in favour of locating larger, less energetically profitable items that can be carried to protective cover for consumption without greatly sacrificing foraging efficiency. The squirrel's tendency to reject a more profitable item is a function of its distance from cover and the size of the less profitable items. Such behaviour is inconsistent with predictions of current diet models, but is consistent with our qualitative predictions based on a previously determined predation-risk-foraging-efficiency trade-off in the grey squirrel.  相似文献   

6.
A review of 135 accounts of predation on seahorses and pipefishes identified 82 predator species, with nine species of seahorses and 25 of pipefishes recorded as prey. These cryptic fishes were generally depredated in low numbers. Where syngnathids formed a high proportion of predator diets, predation occurred on (1) a single abundant species during a population boom or large die-off, (2) concentrations of individuals utilising floating marine vegetation, or (3) juveniles when abundant during the breeding season. Predation coinciding with high syngnathid densities suggests their predators are foraging opportunistically rather than targeting syngnathids as prey. Invertebrates, fishes, sea turtles, waterbirds and marine mammals were all syngnathid predators: these included taxa that do not frequent the demersal habitat generally occupied by seahorses and pipefishes. Thus, seahorses and pipefishes may be moving in the open ocean more than suspected, perhaps using floating mats of marine vegetation. If so, this behaviour could act as a hitherto unknown vector for syngnathid movement and dispersal. Information on syngnathid abundance in predator diet (measured as percent number, volume, or mass) was available in 45 reviewed accounts; in 27% (n = 12) of these studies seahorses or pipefishes comprised ≥20% of predator diet (range 0.005–100%). Frequency of occurrence (percent stomachs, seabird bill-loads, or regurgitations in which a prey item occurred) was provided in 39 accounts, with 15% (n = 6) of these recording a frequency of ≥20% (range 0.003–65%).  相似文献   

7.
Red fox Vulpes vulpes predation on roe deer Capreolus capreolus fawns has the potential to strongly affect prey population dynamics, but it is unclear whether this relationship is symmetrical or not. We analysed the spring–summer diet of adult foxes and of their cubs in a fragmented agricultural area of southeastern Norway, where a parallel study showed that the predator kills annually 25% of the radio-monitored roe deer fawns. The overall diet was highly varied and was dominated by small mammals (33% volume), especially Microtus agrestis, and medium-large mammals (25%), largely represented by fawns. The frequency of occurrence (FO) of fawns in the diet of adult foxes was highest in early spring, thus, supporting previous studies showing that the predator started actively hunting for fawns from the very beginning of the birth season. During the summer, the FO of both fawns and small mammals markedly declined, while that of berries and invertebrates increased. As expected for central-place foragers, cubs consumed a higher proportion of large prey items compared to adults. In particular, 25% of scats from cubs—versus 9% from adults—contained roe deer remains, suggesting a high profitability of fawns for vixens raising offspring. However, considering the wide food spectrum and the availability of several large prey items in our study area, it seems unlikely that the importance of fawns to the diet and population dynamics of red foxes could be as great as the impact of the predator on roe deer populations. This asymmetrical relationship implies that there are unlikely to be any stabilising feedback mechanisms in the predator–prey relationship.  相似文献   

8.
In this paper we study optimal animal movement in heterogeneous environments consisting of several food patches in which animals trade-off energy gain versus predation risk. We derive a myopic optimization rule describing optimal animal movements by fitness maximization assuming an animal state is described by a single quantity (such as weight, size, or energy reserves). This rule predicts a critical state at which an animal should switch from a more dangerous and more profitable patch to a less dangerous and less profitable patch. Qualitatively, there are two types of behavior: either the animal switches from one patch to another and stays in the new patch for some time before it switches again, or the animal switches between two patches instantaneously. The former case happens if animal state growth is positive in all patches, while the latter case happens if animal state growth is negative in one patch. In particular, this happens if one patch is a refuge. We consider in detail two special cases. The first one assumes a linear animal state growth while the second assumes a saturating animal state growth described by the von Bertalanffy curve. For the first model the proportion of time spent in the more profitable and more risky patch increases with profitability of this patch when state growth is positive in both patches. On contrary, if state growth is negative in the less profitable and safer patch, animals spend proportionally less time in the more profitable and more risky patch as its profitability increases. As a function of the predation risk in the more profitable patch the time spent there proportionally decreases. When animal state growth is described by the saturating curve, time spent in the more risky patch is a hump-shaped curve if state growth is positive in both patches. Our results extend the mu/f rule, which predicts that animals should behave in such a way as to minimize mortality risk to resource intake ratio.  相似文献   

9.
Functionally redundant predation and functionally complementary predation are both widespread phenomena in nature. Functional complementary predation can be found, for example, when predators feed on different life stages of their prey, while functional redundant predation occurs when different predators feed on all life stages of a shared prey. Both phenomena are common in nature, and the extent of differential life-stage predation depends mostly on prey life history; complementary predation is expected to be more common on metamorphosing prey species, while redundant predation is thought to be higher on non-metamorphosing species. We used an ordinary differential equation model to explore the effect of varying degree of complementary and redundant predation on the dynamic properties of a system with two predators that feed on an age-structured prey. Our main finding was that predation on one stage (adult or juvenile) resulted in a more stable system (i.e., it is stable for a wider range of parameters) compared to when the two predators mix the two prey developmental stages in their diet. Our results demonstrate that predator–prey dynamics depends strongly on predators' functionality when predator species richness is fixed. Results also suggest that systems with metamorphosing prey are expected to be more diverse compared to systems with non-metamorphosing prey.  相似文献   

10.
Both predation and individual variation in life history traits influence population dynamics. Recent results from laboratory predator–prey systems suggest that differences between individuals can also influence predator–prey dynamics when different genotypes experience different predation-associated mortalities. Despite the growing number of studies in this field, there is no synthesis identifying the overall importance of the interactions between predation and individual heterogeneity and their role in shaping the dynamics of free-ranging populations of vertebrates. We aim to fill this gap with a review that examines how individual variability in prey susceptibility, in predation costs, in predator selectivity, and in predatory performance, might influence prey population dynamics. Based on this review, it is clear that (1) predation risk and costs experienced by free-ranging prey are associated with their phenotypic attributes, (2) many generalist predator populations consist of individual specialists with part of the specialization associated with their phenotypes, and (3) a complete understanding of the population dynamic consequences of predation may require information on individual variability in prey selection and prey vulnerability. Altogether, this work (1) highlights the importance of maintaining long-term, detailed studies of individuals of both predators and prey in contrasting ecological conditions, and (2) advocates for a better use of available information to account for interactive effects between predators and their prey when modelling prey population dynamics.  相似文献   

11.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

12.
Flexibility in the feeding habits of juvenile Nile perch (1–30 cm total length) was studied from September 1988 to September 1989 at four sites (depth range: 1–25 m) in the Mwanza Gulf of Lake Victoria. During this period haplochromine cichlids were virtually absent in the area. We looked at the combined effects of predator size, season and habitat. Stomach content analysis showed that with increase in size, the diet of Nile perch shifted from zooplankton and midge larvae, to macro-invertebrates (shrimps and dragonfly nymphs) and fish. At a size of 3–4 cm Nile perch shifted from size-selective predation on the largest cyclopoids to predation on the largest, less abundant, calanoids. Zooplanktivory ended at a size of ca. 5 cm. Although an ontogenetic shift in the diet of juvenile Nile perch was obvious at all sampling stations, the contribution of prey types appeared to be habitat related. With increasing water depth the frequency of occurrence in the diet of most prey types decreased, but that of shrimps increased. At the entrance of the gulf (20–25 m deep) shrimps were the main food source throughout the year. Halfway the gulf (12–16 m), Nile perch showed seasonality in their feeding behaviour. Shrimps were taken there especially during the rainy season (January to May) when their densities at this station were high, whereas cannibalism prevailed during the rest of the year. In an environment with Nile perch and dagaa as alternative prey, shrimps were taken almost exclusively. They could be regarded as a key prey for Nile perch between 5 and 30 cm.  相似文献   

13.
Theoretical and empirical evidence in a one-predator two-prey system consistently indicates a regular trend that the less profitable (therefore, less vulnerable) prey increases in abundance with enrichment. The response in the abundance of the more profitable (more vulnerable) prey to enrichment has, however, remained unclear. Previous theoretical models have assumed the less profitable prey as inedible, though its actual profitability is unknown. Here, relaxing this assumption, we show that the response of the more profitable prey abundance to enrichment depends critically on the profitability of the less profitable prey. Specifically, the more profitable prey increases in abundance with enrichment if the profitability of the less profitable prey is lower than a critical value so that it cannot support the predator population by itself even at high densities (in this case, the prey is referred to as 'unpalatable') and decreases otherwise. This establishes a more general rule which unifies the previous works and resolves the indeterminacy on the response of the more profitable prey.  相似文献   

14.
15.
Optimal diet choice for large herbivores: an extended contingency model   总被引:5,自引:1,他引:4  
1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.
2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.
3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model.
4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected.
5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.
6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet.
7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.  相似文献   

16.
Many of the most abundant small and juvenile fishes within shallow water estuarine nursery habitats consume other fish to some degree but have rarely been considered as potentially important predators in the functioning of these systems because of the low (<50%) average occurrence of fish in their diets. Predation by abundant minor piscivores on new recruits when they first enter the nursery may make a significant contribution to the predation mortality of this critical life-history stage. To determine the potential importance of minor piscivores as predators on new recruits, temporal patterns in the diets of 15 common species of minor piscivores were examined and related to the abundance of new recruits (≤20 mm FL) in biweekly seine samples over 13 months in shallow (<1.5 m) sandy habitats in the Ross River estuary in north-eastern Queensland, Australia. The high spatial patchiness of new recruits made it difficult to correlate their abundance with their consumption by minor piscivores, and there was no relationship detected between the abundance of new recruits and the occurrence of fish in the diets of minor piscivores. To gain broader insight into spatio-temporal patterns in the consumption of fish prey by minor piscivores, we utilised a collection of fishes sampled during various studies over 6 years from 17 estuaries in the region to examine the diets of >3500 individuals from 20 spp. of minor piscivores. Patterns in the consumption of fish prey by these minor piscivores, especially the highly abundant sparids, sillaginids and ambassids, revealed that the low average occurrence of fish in their diet greatly underestimated the predation pressure imposed by these on fish prey at particular locations and times. For most sampling occasions and locations few minor piscivores consumed fish prey (consumed by 0% of individuals examined), while occasionally a large proportion of individuals within a taxon did so (50–100% of individuals consumed fish prey). Often at such times/locations multiple species of minor piscivores simultaneously preyed heavily on fish. When minor piscivores consumed fish, they preyed mainly on small new recruits. Because many of these minor piscivores are relatively recent recruits, many of the small and juvenile fishes believed to gain refuge in shallow estuarine nurseries may themselves be important predators on fish subsequently recruiting to these habitats, and so potentially play a significant role in structuring estuarine fish faunas and the functioning of shallow water nurseries.  相似文献   

17.
To study the effects of short-term experience on prey size-selection ten-spined sticklebacks (Pungitius pungitius) were fed 7–13 days with five differing diets of novel prey, Daphnia magna. The diets consisted either of a mixture of two prey size classes (1.7 and 2.2 mm) or of single-sized (1.7 and 2.2 mm) prey. Before and after the diets, the sticklebacks' prey size selection was tested with a 1:1 ratio of 1.7 and 2.2 mm D. magna. Sticklebacks made more attempts to capture large than small prey, but their foraging success was better for small than for large prey. Sticklebacks fed with a diet of both prey sizes chose significantly more large prey on the 13th day than on the 7th day or at the beginning of the experiment. Handling times for both Daphnia size classes decreased slightly with increasing foraging experience. Inexperienced sticklebacks made more unsuccessful strikes on large prey than did experienced fish. Foraging success on large prey improved somewhat with increasing experience in all but one diet group. The results indicate that experience affected ten-spined sticklebacks' prey selection.  相似文献   

18.
We test the hypothesis that predatory benthic fishes play a similar ecological role in different estuaries by displaying the same feeding strategy. We used whitemouth croaker (Micropogonias furnieri) populations in four southern Brazilian estuaries (Mampituba (29°12′ S), Tramandaí (30°02′ S), Patos Lagoon (32°10′ S) and Chuí (33°44′ S)) as a model. We compared feeding strategies based on a graphical method proposed by Amundsen et al. [(1996) J Fish Biol. 48:607–614], with confidence intervals of frequency of occurrence of prey (FO) and prey-specific abundance (PSA) estimated by bootstrap analyses. We test differences among diets in the four estuaries used the ANOSIM and SIMPER analyses. We minimize the effect of fish size on prey selectivity by restricting the diet analysis to 70–130 mm size classes. Across all estuaries, infaunal prey was the dominant item in the whitemouth croaker’s diet. Most individuals fed on dominant infaunal prey such as Polychaetes (Chuí: FO = 0.55 ± 0.018 SD; PSA = 0.88 ± 0.016 and Mampituba: FO = 0.73 ± 0.037; PSA = 0.56 ± 0.056), Bivalves (Tramandaí: FO = 0.58 ± 0.032; PSA = 0.92 ± 0.024) and Tanaidaceans (Patos Lagoon: FO = 0.63 ± 0.027; PSA = 0.62 ± 0.043). A between-phenotype contribution to the niche width was observed in all four estuaries, where individuals generally consumed relatively large amounts of different prey types in the same habitat and season. Whitemouth croaker have a zoobenthivore feeding strategy and seemed to maintain the same feeding strategy in all the four estuaries. Specialization on consuming infaunal prey displayed by juveniles of whitemouth croaker could be an important factor leading to the successful colonization of South American estuaries.  相似文献   

19.
Animal feeding ecology and diet are influenced by the fear of predation. While the mechanistic bases for such changes are well understood, technical difficulties often prevent testing how these mechanisms interact to affect a mesopredator’s diet in natural environments. Here, we compared the insectivorous lizard Acanthodactylus beershebensis’ feeding ecology and diet between high- and low-risk environments, using focal observations, intensive trapping effort and fecal pellet analysis. To create spatial variation in predation risk, we planted “artificial trees” in a scrubland habitat that lacks natural perches, allowing avian predators to hunt for lizards in patches that were previously unavailable to them. Lizards in elevated-risk environments became less mobile but did not change their microhabitat use or temporal activity. These lizards changed their diet, consuming smaller prey and less plant material. We suggest that diet shifts were mainly because lizards from risky environments consumed prey items that required shorter handling time.  相似文献   

20.
Differential Predation by Bdellovibrio bacteriovorus 109J   总被引:1,自引:0,他引:1  
Bdellovibrio bacteriovorus is a predatory bacterium that can replicate only inside Gram-negative bacteria. We incubated B. bacteriovorus 109J in a mixture of two prey cells present in equal numbers and enumerated prey cells after 3 h of predation. In multiple prey pairings, B. bacteriovorus preferentially lysed on one prey over the other. When prey were individually incubated with B. bacteriovorus, they were preyed on with different efficiencies. Three prey had only 5–8% of cells remaining after Bdellovibrio predation and the other three prey had 37–43% of cells remaining. Timing of attachment of B. bacteriovorus to prey cells also varied with Bdellovibrio attachment to more preferred prey occurring the fastest. These results suggest that B. bacteriovorus 109J does not randomly infect prey cells but infects and kills some prey more readily than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号