首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BM 06.022 is a t-PA deletion variant which comprises the kringle 2 and the protease domain. Production of BM 06.022 in Escherichia coli leads to the formation of inactive inclusion bodies, which have to be refolded by an in vitro refolding process to achieve activity and proper structure of the domains. We analysed the biochemical properties of BM 06.022 to obtain some information about the structure of kringle 2 and the protease as compared with the structure of these domains in the intact t-PA molecule. The kinetic analysis of the amidolytic activity of BM 06.022 and CHO-t-PA yielded similar values for kcat (13.9 s-1 and 11.4 s-1 for the single chain forms and 33.9 s-1 and 27.1 s-1 for the two chain forms of BM 06.022 and CHO-t-PA, respectively) and for Km (2.5 mM and 2.1 mM for the single chains forms and 0.5 mM and 0.3 mM for the two chain forms of BM 06.022 and CHO-t-PA, respectively). BM 06.022 and CHO-t-PA have the same plasminogenolytic activity in the absence of CNBr fragments of fibrinogen. However, BM 06.022 has a lower plasminogenolytic activity in the presence of CNBr fragments of fibrinogen and a lower affinity to fibrin as compared with CHO-t-PA. The affinity of BM 06.022 for fibrin is completely suppressed by 0.3 mM epsilon-aminocaproic acid, while the intact t-PA has a residual affinity of approximately 30%. The dissociation constants for the interaction with the lysine analogue epsilon-aminocaproic acid are 0.10 mM and 0.09 mM for BM 06.022 and the intact t-PA, respectively. Furthermore, BM 06.022 and CHO-t-PA are inhibited by PAI-1 in a similar manner.  相似文献   

2.
Tissue-type plasminogen activator (t-PA), the serine protease responsible for catalyzing the production of plasmin from plasminogen at the site of blood clots, is synthesized as a single-chain polypeptide precursor. Proteolytic cleavage at the C-terminal side of Arg275 generates a two-chain form of the enzyme whose subunits are held together by a single disulfide bond. We have measured the activities of both forms of the wild-type enzyme, as well as that of a mutant enzyme (Arg275----Gly), created by oligonucleotide-directed mutagenesis, that cannot be cleaved into a two-chain form. Both types of single-chain t-PAs are enzymatically active and exhibit identical Vmax and Km values when assayed with synthetic peptide substrates, indicating that the single amino acid change had no effect on the amidolytic activity of the enzyme. However, cleavage of wild-type t-PA into the two-chain form results in increased activity both on a peptide substrate and on the natural substrates Lys- and Glu-plasminogen in the absence or presence of stimulation by soluble fibrin. The enhanced activity is due to a 3-5-fold increase in the Vmax of the cleaved enzyme, rather than to any change in the Km values for the various substrates. During incubation with plasminogen, the single-chain form of wild-type t-PA is converted to the two-chain form by plasmin generated during the reaction. This conversion, from the less active form of the enzyme, results in a reaction that displays biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Complexes between tissue-type plasminogen activator (t-PA) and its rapidly acting inhibitor plasminogen activator inhibitor type 1 (PAI-1) are bound, internalized, and degraded by HepG2 cells. The mechanism involves endocytosis mediated by a specific high-affinity receptor. However, the particular domains of the complex that are recognized by the receptor have not been elucidated. To identify the determinants involved in ligand binding to the receptor, several variants of t-PA were assessed for their ability to form complexes with PAI-1 and thereby to inhibit specific cellular binding of complexes between structurally unmodified 125I-t-PA and PAI-1. Catalytically active variants lacking selected structural domains form complexes with PAI-1 and inhibit 125I-t-PA.PAI-1 binding to HepG2 cells. In addition, several forms of the plasminogen activator urokinase (u-PA), which shares partial structural homology with t-PA, were evaluated as competitors of cellular binding. The catalytically active two-chain forms of u-PA, but not the inactive proenzyme single-chain form, complex with PAI-1 and inhibit specific binding of 125I-t-PA.PAI-1, suggesting that the serine protease domain, rather than other domains, may confer the determinants required for cellular binding. However, a mutant t-PA with markedly reduced catalytic activity, resulting from replacement of the active site serine with threonine, not only forms complexes with PAI-1 but also inhibits specific cellular binding of unmodified 125I-t-PA.PAI-1. These data indicate that specific binding of t-PA.PAI-1 to HepG2 cells does not require a serine-containing catalytic site in the protease domain. To determine whether binding of the complex is mediated through other components of t-PA or through structural elements of PAI-1, both t-PA and PAI-1 were examined separately for capacity to bind directly to HepG2 cells. To exclude potential interactions with components of the extracellular matrix which contains binding sites for PAI-1, ligand binding to HepG2 cells in suspension was assessed. Although neither t-PA nor PAI-1 alone binds specifically to HepG2 cells, the preformed t-PA.PAI-1 complexes do. These findings suggest that specific binding of t-PA.PAI-1 requires elements of the PAI-1 moiety and/or parts of the protease domain of t-PA.  相似文献   

4.
Activation of the zymogen form of a serine protease is associated with a conformational change that follows proteolysis at a specific site. Tissue-type plasminogen activator (t-PA) is homologous to mammalian serine proteases and contains an apparent activation cleavage site at arginine-275. To clarify the functional consequences of cleavage at arginine-275 of t-PA, site-specific mutagenesis was performed to convert arginine-275 to a glutamic acid. The mutant enzyme (designated Arg-275----Glu t-PA) could be converted to the two-chain form by Staphylococcus aureus V8 protease but not by plasmin. The one-chain form was 8 times less active against the tripeptide substrate H-D-isoleucyl-L-prolyl-L-arginine-p-nitroanilide (S-2288), and the ability of the enzyme to activate plasminogen in the absence of fibrinogen was reduced 20-50 times compared to the two-chain form. In contrast, one-chain Arg-275----Glu t-PA has equal activity to the two-chain form when assayed in the presence of physiological levels of fibrinogen and plasminogen. Fibrin bound significantly more of the one-chain form of t-PA than the two-chain form for both the wild-type and mutated enzymes. One- and two-chain forms of the wild-type and mutated plasminogen activators slowly formed complexes with plasma protease inhibitors, although the one-chain forms showed decreased complex formation with alpha 2-macroglobulin. The one-chain form of t-PA therefore is fully functional under physiologic conditions and has an increased fibrin binding compared to the two-chain form.  相似文献   

5.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

6.
Two murine monoclonal antibodies (MA-2G6 and MA-1C8), secreted by hybridomas obtained by fusion of myeloma cells with spleen cells from mice immunized with human tissue-type plasminogen activator (t-PA), inhibited the activity of t-PA on fibrin plates. MA-2G6 inhibited the amidolytic activity of t-PA and did not react with t-PA in which the active-site serine was blocked with diisopropylfluorophosphate nor with t-PA in which the active-site histidine was alkylated by reaction with D-Ile-Pro-Arg-CH2Cl. This indicated that MA-2G6 is directed against an epitope covering the active site of t-PA. MA-1C8 did not inhibit the amidolytic activity of t-PA, but abolished both the binding of t-PA to fibrin and the stimulatory effect of fibrin on the activation of plasminogen by t-PA. Thus MA-1C8 is directed against an epitope which covers the fibrin-binding site of t-PA. The A and B chains of partially reduced two-chain t-PA were separated by immunoadsorption on immobilized MA-1C8 and MA-2G6. The purified B chain reacted with MA-2G6 but not with MA-1C8 and activated plasminogen following Michaelis-Menten kinetics with kinetic constants similar to those of intact t-PA (Km = 100 microM and kcat = 0.02 s-1). However, fibrin or CNBr-digested fibrinogen did not stimulate the activation of plasminogen by the B chain. The purified A chain reacted with MA-1C8 but not with MA-2G6. It bound to fibrin with an affinity similar to that of intact t-PA but did not activate plasminogen. It is concluded that the active center of t-PA is located in the B chain and the fibrin-binding site in the A-chain. Both functional domains are required for the regulation by fibrin of the t-PA-mediated activation of plasminogen.  相似文献   

7.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

8.
D L Higgins  G A Vehar 《Biochemistry》1987,26(24):7786-7791
Tissue-type plasminogen activator (t-PA) plays a central role in fibrinolysis in vivo. Although it is known to bind to fibrin, the dissociation constant (Kd) and number of moles bound per mole of fibrin monomer (n) have never been measured directly. In this study, the binding of both the one-chain form and the two-chain form of recombinant, human t-PA to fibrin was measured. Although more one-chain t-PA than two-chain t-PA is bound to fibrin, the Kd's and n's were within experimental error of each other. Significantly more t-PA is bound to clots made from fibrinogen which has been digested with plasmin than to clots made from intact fibrinogen. The additional binding was shown to be due to the formation of new set(s) of binding site(s) with dissociation constants that are 2-4 orders of magnitude tighter than the binding site present on clots made from intact fibrinogen. epsilon-Aminocaproic acid was capable of competing for the loose binding site present on both intact and degraded fibrin but had little effect on the binding of t-PA to the new site(s) formed by plasmin digestion. This increase in binding caused by plasmin-mediated proteolysis of fibrin suggests a possible mechanism for a positive regulation capable of accelerating fibrinolysis.  相似文献   

9.
Bacillus megaterium P450 BM3 (BM3) is a P450/P450 reductase fusion enzyme, where the dimer is considered the active form in NADPH-dependent fatty acid hydroxylation. The BM3 W1046A mutant was generated, removing an aromatic “shield” from its FAD isoalloxazine ring. W1046A BM3 is a catalytically active NADH-dependent lauric acid hydroxylase, with product formation slightly superior to the NADPH-driven enzyme. The W1046A BM3 Km for NADH is 20-fold lower than wild-type BM3, and catalytic efficiency of W1046A BM3 with NADH and NADPH are similar in lauric acid oxidation. Wild-type BM3 also catalyzes NADH-dependent lauric acid hydroxylation, but less efficiently than W1046A BM3. A hypothesis that W1046A BM3 is inactive [15] helped underpin a model of electron transfer from FAD in one BM3 monomer to FMN in the other in order to drive fatty acid hydroxylation in native BM3. Our data showing W1046A BM3 is a functional fatty acid hydroxylase are consistent instead with a BM3 catalytic model involving electron transfer within a reductase monomer, and from FMN of one monomer to heme of the other [12]. W1046A BM3 is an efficient NADH-utilizing fatty acid hydroxylase with potential biotechnological applications.  相似文献   

10.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

11.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

12.
Primary and early subcultures (1st- to 3rd passage) of human umbilical vein endothelial cells produce tissue-type plasminogen activator (t-PA) antigen, consisting only of a major Mr 110,000 t-PA form. Later subcultures (greater than 4th passage) produce increasing amounts of t-PA antigen, consisting of a major Mr 110,000 and a minor Mr 68,000 form as well as increasing amounts of urokinase-type plasminogen activator (u-PA) antigen, consisting of a minor Mr 95,000 and major Mr 54,000 form. All of the major plasminogen activator forms were purified to homogeneity from 72 h serum-free conditioned media (3 liters, 1-1.8 x 10(9) cells) by a combination of immunoaffinity and gel filtration chromatography. Typically, 4th to 6th passage cultures produced/secreted t-PA-type proteins consisting of an inactive Mr 110,000 (220 IU/mg) and active Mr 68,000 (76,500 IU/mg) form representing about 39 and 8%, respectively, of the total starting sodium dodecyl sulfate stable t-PA activity, and u-PA-type proteins consisting of an inactive Mr 95,000 (700 IU/mg) and active Mr 54,000 (81,000 IU/mg) form representing about 9 and 38%, respectively, of the total starting sodium dodecyl sulfate stable u-PA activity. The isolated Mr 68,000 t-PA and Mr 54,000 u-PA proteins, exist only as two-chain forms in the absence of aprotinin and as mixtures of single- and two-chain proteins in the presence of aprotinin. Treatment with nucleophilic agents completely dissociated the Mr 110,000 t-PA and Mr 95,000 u-PA proteins into their respective Mr 68,000 t-PA and Mr 54,000 u-PA activity forms and a common Mr 46,000 protein, confirming the enzyme-inhibitor complex nature of these inactive plasminogen activator forms.  相似文献   

13.
In contrast to most other serine proteases, tissue-type plasminogen activator (t-PA) possesses enzymatic activity as the one-chain zymogen form. The hypothesis that lysine residues 277 or 416 may be involved in stabilization of an active conformation of one-chain t-PA via salt-bridge formation with aspartic acid residue 477 was tested by site-directed mutagenesis. Four recombinant t-PA mutants were constructed. The amidolytic activities of these analogues were compared to that of authentic t-PA. Substitution of arginine-275 provided an analogue [( R275G]t-PA) resistant to plasmin cleavage. The amidolytic activity of [R275G]t-PA was comparable to that of authentic one-chain t-PA, and so was the activity of [R275L,K277L]t-PA, in which additional substitution of lysine residue 277 was carried out. This suggested that its presence was nonessential for obtaining one-chain t-PA activity. In contrast, substitution of lysine residue 416 to obtain [K416S]t-PA and [K416S,H417T]t-PA resulted in substantial quenching of amidolytic one-chain activity. As expected, the amidolytic activities of the two-chain forms were less affected by the substitution. Involvement of lysine residue 416 in one-chain t-PA activity was also indicated by decreased activities of [K416S]t-PA and [K416S,H417T]t-PA with plasminogen as the substrate. The one-chain activity of the lysine residue 416 substitution analogues was partially restored in the presence of fibrin. This could indicate that strong ligands such as fibrin might provide an alternative stabilization of the active conformation of one-chain t-PA.  相似文献   

14.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have expressed the 174-263 fragment (kringle-2 domain) of human tissue-type plasminogen activator (t-PA) in Escherichia coli by secretion into the periplasmic space using the alkaline phosphatase promoter and stII enterotoxin signal sequence. A large portion of the secreted protein is associated with an insoluble cellular fraction. This material can be solubilized by extraction with denaturant and reducing agent and then recovered in active form by refolding in the presence of reduced and oxidized glutathione. Kringle-2 is then easily purified by affinity chromatography on lysine-Sepharose followed by cation-exchange chromatography. The isolated protein has an amino acid composition and N-terminal sequence as expected for the 174-263 fragment of t-PA, indicating that the signal peptide has been properly removed. Circular dichroic spectra suggest that the protein is folded similar to the kringle-4 domain of plasminogen [Castellino et al. (1986) Arch. Biochem. Biophys. 247, 312-320]. Equilibrium dialysis experiments indicate a single binding site on kringle-2 for L-lysine having a KD of 100 microM. Using a method based on elution of kringle from lysine-Separose with omega-aminocarboxylic acids [Winn et al. (1980) Eur. J. Biochem. 104, 579-586], we have shown the lysine binding site of t-PA kringle-2 to have a preference for a ligand with 8.8-A separation between amine and carboxylate functions. Charge interactions with the epsilon-amino group of L-lysine are important in binding since the affinities for N epsilon-acetyl-L-lysine, L-arginine, and gamma-guanidinobutyric acid are decreased greater than 2000-fold, 200-fold, and 12-fold, respectively, relative to the affinity for L-lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Elevated levels of lipoprotein(a) [Lp(a)] are associated with an increased risk of atherothrombotic disease, but the mechanism(s) by which Lp(a) potentiates atherogenesis is unknown. The extensive homology of apolipoprotein(a) [apo(a)] to plasminogen has led us and others to postulate that Lp(a) may impair fibrinolysis. We have previously shown that Lp(a) inhibits fibrin stimulation of plasminogen activation by tissue-type plasminogen activator (t-PA); however, we and other investigators have been unable to demonstrate direct inhibition of t-PA by Lp(a) in solution. We now report that t-PA binds reversibly and saturably to surface-bound Lp(a) and to low-density lipoprotein (LDL) and that as a result of this binding activation of plasminogen by t-PA is inhibited. The catalytic efficiency (kcat/Km) of t-PA when bound to polystyrene surface-bound fibrinogen increased 2.9-fold compared to t-PA bound to control wells. When bound to surface-bound Lp(a), however, the catalytic efficiency of t-PA was reduced 9.5-fold compared to t-PA bound to control wells; likewise, by binding to surface-bound LDL, the catalytic efficiency of t-PA was reduced 16-fold compared to the control. Studies with defined monoclonal antibodies suggest that major determinants of t-PA binding are its active site, the LDL receptor binding domain of apolipoprotein B-100 (apoB-100), and apo(a). These data suggest a unique mechanism by which Lp(a) and LDL incorporated in an atheroma can inhibit endogenous fibrinolysis and thereby contribute to the genesis of atherothrombotic disease.  相似文献   

17.
Tissue-type plasminogen activator (t-PA) is a mosaic protein containing several distinct structural domains attached to the serine protease catalytic unit present at its COOH terminus. To investigate structure-function relationships in t-PA, we deleted the NH2-terminal domains, finger and epidermal growth factor, by genetic engineering. The genes for the parent and mutant t-PA were expressed in a bovine papilloma virus-dependent mammalian cell system. The secreted proteins were purified to homogeneity. The mutant protein was processed to the expected size of about 60 kDa compared to approximately 68 kDa for the parent t-PA, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin autography. While the mutant t-PA had amidolytic activity comparable to native t-PA, it did not bind appreciably to fibrin. Consequently, fibrin-dependent enzymic activity, i.e. plasminogen activation in the presence of soluble fibrin and fibrinolysis were lower than with native recombinant t-PA. The effect of deletion of NH2-terminal domains on the plasma half-life (t1/2) was investigated by injecting native and mutant t-PA into mice. While the majority of the t-PA disappeared initially with a t1/2 of about 2 min, mutant t-PA cleared at a much slower rate with t1/2 of about 50 min. These findings suggest that the NH2-terminal domains of t-PA not only determine its specificity for binding to fibrin but also mediate its clearance from plasma in vivo. Furthermore, the catalytic unit in t-PA seems to function autonomously.  相似文献   

18.
The interaction in vivo of 125I-labeled tissue-type plasminogen activator (t-PA) with the rat liver and the various liver cell types was characterized. Intravenously injected 125I-t-PA was rapidly cleared from the plasma (t1/2 = 1 min), and 80% of the injected dose associated with the liver. After uptake, t-PA was rapidly degraded in the lysosomes. The interaction of 125I-t-PA with the liver could be inhibited by preinjection of the rats with ovalbumin or unlabeled t-PA. The intrahepatic recognition site(s) for t-PA were determined by subfractionation of the liver in parenchymal, endothelial, and Kupffer cells. It can be calculated that parenchymal cells are responsible for 54.5% of the interaction of t-PA with the liver, endothelial cells for 39.5%, and Kupffer cells for only 6%. The association of t-PA with parenchymal cells was not mediated by a carbohydrate-specific receptor and could only be inhibited by an excess of unlabeled t-PA, indicating involvement of a specific t-PA recognition site. The association of t-PA with endothelial cells could be inhibited 80% by the mannose-terminated glycoprotein ovalbumin, suggesting that the mannose receptor plays a major role in the recognition of t-PA by endothelial liver cells. An excess of unlabeled t-PA inhibited the association of 125I-t-PA to endothelial liver cells 95%, indicating that an additional specific t-PA recognition site may be responsible for 15% of the high affinity interaction of t-PA with this liver cell type. It is concluded that the uptake of t-PA by the liver is mainly mediated by two recognition systems: a specific t-PA site on parenchymal cells and the mannose receptor on endothelial liver cells. It is suggested that for the development of strategies to prolong the half-life of t-PA in the blood, the presence of both types of recognition systems has to be taken into account.  相似文献   

19.
In order to assess which part of the tissue-type plasminogen activator (t-PA) molecule should be (genetically) modified to obtain more-slowly-clearing mutants, two-chain t-PA and its isolated heavy and light chains were radiolabelled and injected into rats. The vast majority of t-PA and the heavy chain disappeared from the blood circulation with half-lives of 2.3 and 1.0 min respectively. The clearance of the light chain was biphasic, owing to complex-formation with plasma proteinase inhibitors. The disappearance of di-isopropylphospho-light chain, which has a blocked active site, was nearly monophasic, with a half-life of 5.7 min. Organ distribution studies showed that hepatic clearance constituted the major pathway in all cases. These results strongly suggest that t-PA is recognized by the liver primarily through the heavy chain.  相似文献   

20.
Plasma tissue-type plasminogen activator (t-PA) is cleared rapidly in vivo by the liver. Previous studies with the human hepatoma cell line HepG2 have identified a clearance system for t-PA modulated by plasminogen activator inhibitor type 1 (PAI-1). In the present study, a rat hepatoma cell line MH1C1 is shown to contain a PAI-1-independent t-PA clearance system. At 4 degrees C, binding of 125I-t-PA to MH1C1 cells was rapid, specific, and saturable. Scatchard analysis of the binding data yielded a mean estimate of 105,000 high affinity binding sites per cell (Kd = 4.1 nM). When the bound ligand was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the majority (about 90%) of the specific binding was in the form of uncomplexed 125I-t-PA. This is in contrast to HepG2 cells in which specific binding was mainly in the form of a sodium dodecyl sulfate-stable 125I-t-PA.PAI-1 complex. When availability of matrix-associated PAI-1 was blocked by preincubation with anti-PAI-1 antibody or removed by elastase treatment, specific 125I-t-PA binding to MH1C1 cells was unaffected, whereas most of the specific 125I-t-PA binding to HepG2 cells was abolished. Furthermore, when the active site of t-PA was inactivated with diisopropyl fluorophosphate, the diisopropyl fluorophosphate-t-PA specifically competed for binding of 125I-t-PA to MH1C1 cells, but failed to block specific 125I-t-PA binding to HepG2 cells. At 37 degrees C, PAI-1-independent t-PA binding to MH1C1 cells was followed by ligand uptake and degradation with kinetics similar to that seen in HepG2 cells. Chemical cross-linking of t-PA to MH1C1 cells revealed a specific t-PA binding protein with a molecular mass of about 500,000 daltons. Ligand-receptor complexes generated by chemical cross-linking were immunoprecipitable by anti-t-PA antibody but not by anti-PAI-1 antibody, further supporting the finding that binding of t-PA to MH1C1 cells is PAI-1-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号