首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.  相似文献   

6.
Development of the facial skeleton depends on interactions between intrinsic factors in the skeletal precursors and extrinsic signals in the facial environment. Hox genes have been proposed to act cell-intrinsically in skeletogenic cranial neural crest cells (CNC) for skeletal pattern. However, Hox genes are also expressed in other facial tissues, such as the ectoderm and endoderm, suggesting that Hox genes could also regulate extrinsic signalling from non-CNC tissues. Here we study moz mutant zebrafish in which hoxa2b and hoxb2a expression is lost and the support skeleton of the second pharyngeal segment is transformed into a duplicate of the first-segment-derived jaw skeleton. By performing tissue mosaic experiments between moz(-) and wild-type embryos, we show that Moz and Hox genes function in CNC, but not in the ectoderm or endoderm, to specify the support skeleton. How then does Hox expression within CNC specify a support skeleton at the cellular level? Our fate map analysis of skeletal precursors reveals that Moz specifies a second-segment fate map in part by regulating the interaction of CNC with the first endodermal pouch (p1). Removal of p1, either by laser ablation or in the itga5(b926) mutant, reveals that p1 epithelium is required for development of the wild-type support but not the moz(-) duplicate jaw-like skeleton. We present a model in which Moz-dependent Hox expression in CNC shapes the normal support skeleton by instructing second-segment CNC to undergo skeletogenesis in response to local extrinsic signals.  相似文献   

7.
8.
9.
10.
11.
12.
Requirement for endoderm and FGF3 in ventral head skeleton formation   总被引:6,自引:0,他引:6  
The vertebrate head skeleton is derived in part from neural crest cells, which physically interact with head ectoderm, mesoderm and endoderm to shape the pharyngeal arches. The cellular and molecular nature of these interactions is poorly understood, and we explore here the function of endoderm in this process. By genetic ablation and reintroduction of endoderm in zebrafish, we show that it is required for the development of chondrogenic neural crest cells, including their identity, survival and differentiation into arch cartilages. Using a genetic interference approach, we further identify Fgf3 as a critical component of endodermal function that allows the development of posterior arch cartilages. Together, our results reveal for the first time that the endoderm provides differential cues along the anteroposterior axis to control ventral head skeleton development and demonstrate that this function is mediated in part by Fgf3.  相似文献   

13.
Within the developing vertebrate head, neural crest cells (NCCs) migrate from the dorsal surface of the hindbrain into the mesenchyme adjacent to rhombomeres (r)1 plus r2, r4 and r6 in three segregated streams. NCCs do not enter the intervening mesenchyme adjacent to r3 or r5, suggesting that these regions contain a NCC-repulsive activity. We have used surgical manipulations in the chick to demonstrate that r3 neuroepithelium and its overlying surface ectoderm independently help maintain the NCC-free zone within r3 mesenchyme. In the absence of r3, subpopulations of NCCs enter r3 mesenchyme in a dorsolateral stream and an ectopic cranial nerve forms between the trigeminal and facial ganglia. The NCC-repulsive activity dissipates/degrades within 5-10 hours of r3 removal. Initially, r4 NCCs more readily enter the altered mesenchyme than r2 NCCs, irrespective of their maturational stage. Following surface ectoderm removal, mainly r4 NCCs enter r3 mesenchyme within 5 hours, but after 20 hours the proportions of r2 NCCs and r4 NCCs ectopically within r3 mesenchyme appear similar.  相似文献   

14.
Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.  相似文献   

15.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.  相似文献   

16.
Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.  相似文献   

17.
Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch.  相似文献   

18.
Hedgehog (Hh) signaling plays multiple roles in the development of the anterior craniofacial skeleton. We show that the earliest function of Hh is indirect, regulating development of the stomodeum, or oral ectoderm. A subset of post-migratory neural crest cells, that gives rise to the cartilages of the anterior neurocranium and the pterygoid process of the palatoquadrate in the upper jaw, condenses upon the upper or roof layer of the stomodeal ectoderm in the first pharyngeal arch. We observe that in mutants for the Hh co-receptor smoothened (smo) the condensation of this specific subset of crest cells fails, and expression of several genes is lost in the stomodeal ectoderm. Genetic mosaic analyses with smo mutants show that for the crest cells to condense the crucial target tissue receiving the Hh signal is the stomodeum, not the crest. Blocking signaling with cyclopamine reveals that the crucial stage, for both crest condensation and stomodeal marker expression, is at the end of gastrulation--some eight to ten hours before crest cells migrate to associate with the stomodeum. Two Hh genes, shh and twhh, are expressed in midline tissue at this stage, and we show using mosaics that for condensation and skeletogenesis only the ventral brain primordium, and not the prechordal plate, is an important Hh source. Thus, we propose that Hh signaling from the brain primordium is required for proper specification of the stomodeum and the stomodeum, in turn, promotes condensation of a subset of neural crest cells that will form the anterior neurocranial and upper jaw cartilage.  相似文献   

19.
Bone morphogenetic proteins (Bmps) are key regulators of dorsoventral (DV) patterning. Within the ectoderm, Bmp activity has been shown to inhibit neural development, promote epidermal differentiation and influence the specification of dorsal neurons and neural crest. In this study, we examine the patterning of neural tissue in mutant zebrafish embryos with compromised Bmp signalling activity. We find that although Bmp activity does not influence anteroposterior (AP) patterning, it does affect DV patterning at all AP levels of the neural plate. Thus, we show that Bmp activity is required for specification of cell fates around the margin of the entire neural plate, including forebrain regions that do not form neural crest. Surprisingly, we find that Bmp activity is also required for patterning neurons at all DV levels of the CNS. In swirl/bmp2b(-) (swr(-)) embryos, laterally positioned sensory neurons are absent whereas more medial interneuron populations are hugely expanded. However, in somitabun(-) (sbn(-)) embryos, which probably retain higher residual Bmp activity, it is the sensory neurons and not the interneurons that are expanded. Conversely, in severely Bmp depleted embryos, both interneurons and sensory neurons are absent and it is the most medial neurons that are expanded. These results are consistent with there being a gradient of Bmp-dependent positional information extending throughout the entire neural and non-neural ectoderm.  相似文献   

20.
The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号