首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase–protein kinase B (PI3K–Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K–Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCα1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCα1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K–Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors.  相似文献   

3.
The L-type voltage-gated calcium channels (L-VGCCs) in avian retinal cone photoreceptors are under circadian control, in which the protein expression of the α1 subunits and the current density are greater at night than during the day. Both Ras-mitogen-activated protein kinase (MAPK) and Ras-phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathways are part of the circadian output that regulate the L-VGCC rhythm, while cAMP-dependent signaling is further upstream of Ras to regulate the circadian outputs in photoreceptors. However, there are missing links between cAMP-dependent signaling and Ras in the circadian output regulation of L-VGCCs. In this study, we report that calcineurin, a Ca2+/calmodulin-dependent serine (ser)/threonine (thr) phosphatase, participates in the circadian output pathway to regulate L-VGCCs through modulating both Ras-MAPK and Ras-PI3K-AKT signaling. The activity of calcineurin, but not its protein expression, was under circadian regulation. Application of a calcineurin inhibitor, FK-506 or cyclosporine A, reduced the L-VGCC current density at night with a corresponding decrease in L-VGCCα1D protein expression, but the circadian rhythm of L-VGCCα1D mRNA levels were not affected. Inhibition of calcineurin further reduced the phosphorylation of ERK and AKT (at thr 308) and inhibited the activation of Ras, but inhibitors of MAPK or PI3K signaling did not affect the circadian rhythm of calcineurin activity. However, inhibition of adenylate cyclase significantly dampened the circadian rhythm of calcineurin activity. These results suggest that calcineurin is upstream of MAPK and PI3K-AKT but downstream of cAMP in the circadian regulation of L-VGCCs.  相似文献   

4.
Nitric oxide (NO) plays an important role in phase‐shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light‐dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase‐dependent regulation of L‐type voltage‐gated calcium channels (L‐VGCCs). In chick cone photoreceptors, the L‐VGCCα1 subunit expression and the maximal L‐VGCC currents are higher at night, and both Ras‐mitogen‐activated protein kinase (MAPK)‐extracellular signal‐regulated kinase (Erk) and Ras‐phosphatidylinositol 3 kinase (PI3K)‐protein kinase B (Akt) are part of the circadian output pathways regulating L‐VGCCs. The NO‐cGMP‐protein kinase G (PKG) pathway decreases L‐VGCCα1 subunit expression and L‐VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L‐VGCCs in cone photoreceptors.

  相似文献   


5.
Circadian rhythms in the green sunfish retina   总被引:4,自引:0,他引:4       下载免费PDF全文
We investigated the occurrence of circadian rhythms in retinomotor movements and retinal sensitivity in the green sunfish, Lepomis cyanellus. When green sunfish were kept in constant darkness, cone photoreceptors exhibited circadian retinomotor movements; rod photoreceptors and retinal pigment epithelium (RPE) pigment granules did not. Cones elongated during subjective night and contracted during subjective day. These results corroborate those of Burnside and Ackland (1984. Investigative Ophthalmology and Visual Science. 25:539-545). Electroretinograms (ERGs) recorded in constant darkness in response to dim flashes (lambda = 640 nm) exhibited a greater amplitude during subjective night than during subjective day. The nighttime increase in the ERG amplitude corresponded to a 3-10-fold increase in retinal sensitivity. The rhythmic changes in the ERG amplitude continued in constant darkness with a period of approximately 24 h, which indicates that the rhythm is generated by a circadian oscillator. The spectral sensitivity of the ERG recorded in constant darkness suggests that cones contribute to retinal responses during both day and night. Thus, the elongation of cone myoids during the night does not abolish the response of the cones. To examine the role of retinal efferents in generating retinal circadian rhythms, we cut the optic nerve. This procedure did not abolish the rhythms of retinomotor movement or of the ERG amplitude, but it did reduce the magnitude of the nighttime phases of both rhythms. Our results suggest that more than one endogenous oscillator regulates the retinal circadian rhythms in green sunfish. Circadian signals controlling the rhythms may be either generated within the eye or transferred to the eye via a humoral pathway.  相似文献   

6.
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.  相似文献   

7.
Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC(+)) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC(+) constructs, with the exception of PHYC::LUC(+), display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock.  相似文献   

8.
9.
In the fly's visual system, two classes of lamina interneuron, L1 and L2, cyclically change both their size and shape in a rhythm that is circadian. Several neurotransmitters and the lamina's glial cells are known to be involved in regulating these rhythms. Moreover, vacuolar-type H+-ATPase (V-ATPase) in the optic lobe is thought also to participate in such regulation. We have detected V-ATPase-like immunoreactivity in the heads of both Drosophilla melanogaster and Musca domestica using antibodies raised against either the B- or H-subunits of V-ATPase from D. melanogaster or against the B-subunit from two other insect species Culex quinquefasciatus and Manduca sexta. In the visual systems of both fly species V-ATPase was localized immunocytochemically to the compound eye photoreceptors. In D. melanogaster immunoreactivity oscillated during the day and night and under constant darkness the signal was stronger during the subjective night than the subjective day. In turn, blocking V-ATPase by injecting a V-ATPase blocker, bafilomycin, in M. domestica increased the axon sizes of L1 and L2, but only when bafilomycin was applied during the night. As a result bafilomycin abolished the day/night difference in axon size in L1 and L2, their sizes being similar during the day and night.  相似文献   

10.
In the retinas of many species of lower vertebrates, retinal photoreceptors and pigment epithelium pigment granules undergo daily movements in response to both diurnal, and in the case of teleost cone photoreceptors, endogenous circadian signals. Typically, these cone movements take place at dawn and at dusk when teleosts are maintained on a cyclic light (LD) regime, and at expected dawn and expected dusk when animals are maintained in continuous darkness (DD). Because these movements are so strictly controlled, they provide an overt indicator of the stage of the underlying clock mechanism. In this study we report that both light-induced and circadian-driven cone myoid movements in the Midas cichlid (Cichlasoma citrinellum), occur normally in vitro. Many of the features of retinomotor movements found in vivo also occur in our culture conditions, including responses to light and circadian stimuli and dopamine. Circadian induced predawn contraction and maintenance of expected day position in response to circadian modulation, are also normal. Our studies suggest that circadian regulation of cone myoid movement in vitro is mediated locally by dopamine, acting via a D2 receptor. Cone myoid contraction can be induced at midnight and expected mid-day by dark culture with dopamine or the D2 receptor agonist LY171555. Further, circadian induced predawn contraction can be increased with either dopamine or LY171555, or may be reversed with the dopamine D2 antagonist, sulpiride. Sulpiride will also induce cone myoid elongation in retinal cultures at expected mid- day, but will not induce cone myoid elongation at dusk. In contrast, circadian cone myoid movements in vitro were unaffected by the D1 receptor agonist SCH23390, or the D1 receptor antagonist SKF38393. Our short-term culture experiments indicate that circadian regulation of immediate cone myoid movement does not require humoral control but is regulated locally within the retina. The inclusion of dopamine, or dopamine receptor agonists and antagonists in our cultures, has indicated that retinal circadian regulation may be mediated by endogenously produced dopamine, which acts via a D2 mechanism.  相似文献   

11.
The amplitude of the b-wave of the electroretinogram (ERG) varies with a circadian rhythm in the green iguana; the amplitude is high during the day(or subjective day) and low during the night (or subjective night). Dopamine and melatonin contents in the eye are robustly rhythmic under constant conditions; dopamine levels are high during the subjective day, and melatonin levels are high during the subjective night. Dopamine and melatonin affect the amplitude of the b-wave in an antagonistic and phase-dependent manner: dopamine D2-receptor agonists injected intraocularly during the subjective night produce high-amplitude b-waves characteristic of the subjective day, whereas melatonin injected intraocularly during the subjective day reduces b-wave amplitude. Sectioning the optic nerve abolishes the circadian rhythms of b-wave amplitude and of dopamine content. The results of this study suggest that in iguana, a negative feedback loop involving dopamine and melatonin regulates the circadian rhythm of the ERG b-wave amplitude that is at least in part generated in the brain.  相似文献   

12.
Abstract: The Xenopus retinal photoreceptor layer contains a circadian oscillator that regulates melatonin synthesis in vitro. The phase of this oscillator can be reset by light or dopamine. The phase-response curves for light and dopamine are similar, with transitions from phase delays to phase advances in the mid-subjective night. Light and dopamine each can inhibit adenylate cyclase in retinal photoreceptors, suggesting cyclic AMP as a candidate second messenger for entrainment of the circadian oscillator. We report here that treatments that increase intracellular cyclic AMP reset the phase of the photoreceptor circadian oscillator, and that the phase-response curves for these treatments are 180° out of phase with the phase-response curves for light and dopamine. Activation of adenylate cyclase by forskolin during the late subjective day or early subjective night caused phase advances. The same treatment during the late subjective night or early subjective day caused phase delays. Similar phase shifts were induced by 3-isobutyl-1-methyl-xanthine (a phosphodiesterase inhibitor) or 8-(4-chlorophenylthio)cyclic AMP. All of these treatments also acutely increased melatonin release. Forskolin and 3-isobutyl-1-methylxanthine increased the accumulation of intracellular cyclic AMP, but not cyclic GMP, in photoreceptor layers. The results indicate that cyclic AMP-dependent pathways regulate the photoreceptor circadian oscillator and suggest that a decrease in cyclic AMP may be involved in circadian entrainment by light and/or dopamine.  相似文献   

13.
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT(1)) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT(1) receptors may play an important role in retinal physiology. Indeed, we have recently reported that absence of the MT(1) receptors has a dramatic effect on the regulation of the daily rhythm in visual processing, and on retinal cell viability during aging. We have also shown that removal of MT(1) receptors leads to a small (3-4 mmHg) increase in the level of the intraocular pressure during the night and to a significant loss (25-30%) in the number of cells within the retinal ganglion cell layer during aging. In the present study we investigated the cellular distribution in the C3H/f(+/+) mouse retina of MT(1) receptors using a newly developed MT(1) receptor antibody, and then we determined the role that MT(1) signaling plays in the circadian regulation of the mouse electroretinogram, and in the retinal dopaminergic system. Our data indicate that MT(1) receptor immunoreactivity is present in many retinal cell types, and in particular, on rod and cone photoreceptors and on intrinsically photosensitive ganglion cells (ipRGCs). MT(1) signaling is necessary for the circadian rhythm in the photopic ERG, but not for the circadian rhythm in the retinal dopaminergic system. Finally our data suggest that the circadian regulation of dopamine turnover does not drive the photopic ERG rhythm.  相似文献   

14.
15.
In several parts of the nervous system, adenosine has been shown to function as an extracellular neuromodulator binding to surface receptors on target cells. This study examines the possible role of adenosine in mediating light and circadian regulation of retinomotor movements in teleost cone photoreceptors. Teleost cones elongate in the dark and contract in the light. In continuous darkness, the cones continue to elongate and contract at subjective dusk and dawn in response to circadian signals. We report here that exogenous adenosine triggers elongation (the dark/night movement) in isolated cone inner segment-cone outer segment preparations (CIS-COS) in vitro. Agonist/antagonist potency profiles indicate that adenosine's effect on cone movement is mediated by an A2-like adenosine receptor, which like other A2 receptors enhances adenylate cyclase activity. Although closest to that expected for A2 receptors, the antagonist potency profile for CIS-COS does not correspond exactly to any known A2 receptor subtype, suggesting that the cone receptor may be a novel A2 subtype. Our findings are consistent with previous reports that retinal adenosine levels are higher in the dark, and further suggest that adenosine could act as a neuromodulatory "dark signal" influencing photoreceptor metabolism and function in the fish retina.  相似文献   

16.
The temporal co-ordination of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc) activities by Mesembryanthemum crystallinum L. in C(3) and crassulacean acid metabolism (CAM) modes was investigated under conventional light-dark (LD) and continuous light (LL) conditions. When C(3) , net CO(2) assimilation rate increased during each subjective night under LL with maximum carboxylation unrelated to Rubisco activation state. The CAM circadian rhythm of CO(2) uptake was more pronounced, with CO(2) assimilation rate maximal towards the end of each subjective night. In vivo and in vitro techniques were integrated to map carboxylase enzyme regulation to the framework provided by CAM LL gas exchange activity. Rubisco was activated in vitro throughout each subjective dark period and consistently deactivated at each subjective dawn, similar to that observed at true dawn in constitutive CAM species. Instantaneous carbon isotope discrimination showed in vivo carboxylase co-dominance during the CAM subjective night, initially by Rubisco and latterly C(4) (PEPc), despite both enzymes seemingly activated in vitro. The circadian rhythm in titratable acidity accumulation was progressively damped over successive subjective nights, but maintenance of PEPc carboxylation capacity ensures that CAM plants do not become progressively more 'C(3) -like' with time under LL.  相似文献   

17.
Although chronic alcohol intake is associated with widespread disruptions of sleep-wake cycles and other daily biological rhythms in both human alcoholics and experimental animals, the extent to which the chronobiological effects of alcohol are mediated by effects on the underlying circadian pacemaker remains unknown. Nevertheless, recent studies indicate that both adult and perinatal ethanol treatments may alter the free-running period and photic responsiveness of the circadian pacemaker. The present experiment was designed to further characterize the effects of chronic ethanol intake on the response of the rat circadian pacemaker to brief light pulses. Ethanol-treated and control animals were exposed to 15-min light pulses during either early or late subjective night on the first day of constant darkness following entrainment to a 12:12 light-dark cycle. Relative to pulses delivered during early subjective night and to “no-pulse” conditions, light pulses delivered during late subjective night resulted in period-shortening after-effects under constant darkness, but only in control animals, not in ethanol-treated animals. These results indicate that chronic ethanol intake reduces the responsiveness of the circadian pacemaker to acute photic stimulation, and suggest that the chronobiological disruptions seen in human alcoholics are due in part to alterations in circadian pacemaker function.  相似文献   

18.
Retinal ganglion cells (RGCs) contain circadian clocks driving melatonin synthesis during the day, a subset of these cells acting as nonvisual photoreceptors sending photic information to the brain. In this work, the authors investigated the temporal and light regulation of arylalkylamine N-acetyltransferase (AA-NAT) activity, a key enzyme in melatonin synthesis. The authors first examined this activity in RGCs of wild-type chickens and compared it to that in photoreceptor cells (PRs) from animals maintained for 48?h in constant dark (DD), light (LL), or regular 12-h:12-h light-dark (LD) cycle. AA-NAT activity in RGCs displayed circadian rhythmicity, with highest levels during the subjective day in both DD and LL as well as in the light phase of the LD cycle. In contrast, AA-NAT activity in PRs exhibited the typical nocturnal peak in DD and LD, but no detectable oscillation was observed under LL, under which conditions the levels were basal at all times examined. A light pulse of 30-60?min significantly decreased AA-NAT activity in PRs during the subjective night, but had no effect on RGCs during the day or night. Intraocular injection of dopamine (50 nmol/eye) during the night to mimic the effect of light presented significant inhibition of AA-NAT activity in PRs compared to controls but had no effect on RGCs. The results clearly demonstrate that the regulation of the diurnal increase in AA-NAT activity in RGCs of chickens undergoes a different control mechanism from that observed in PRs, in which the endogenous clock, light, and dopamine exhibited differential effects. (Author correspondence: mguido@fcq.unc.edu.ar ).  相似文献   

19.
The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.  相似文献   

20.
Ribelayga C  Cao Y  Mangel SC 《Neuron》2008,59(5):790-801
Although rod and cone photoreceptor cells in the vertebrate retina are anatomically connected or coupled by gap junctions, a type of electrical synapse, rod-cone electrical coupling is thought to be weak. Using tracer labeling and electrical recording in the goldfish retina and tracer labeling in the mouse retina, we show that the retinal circadian clock, and not the retinal response to the visual environment, controls the extent and strength of rod-cone coupling by activating dopamine D(2)-like receptors in the day, so that rod-cone coupling is weak during the day but remarkably robust at night. The results demonstrate that circadian control of rod-cone electrical coupling serves as a synaptic switch that allows cones to receive very dim light signals from rods at night, but not in the day. The increase in the strength and extent of rod-cone coupling at night may facilitate the detection of large dim objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号