首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 110 cystic fibrosis (CF) patients from the south-west of Germany was screened for 12 different mutations. This analysis resulted in an identification of 79% of all CF mutations and a complete genotype in 66% of the families. The most common mutation found was F508 (67%). Another 5 mutations accounted for a further 12.5% (4% G542X; 3% R553X; 3% N1303K; 2% 1717-1 GA; 0.5% G551D) whereas 6 mutations (R117H, A455E, I507, S549I, S549N, and R1162X) were not found. Fifty-four (49%) patients were AF508 homozygotes and 18 (16.5%) were compound heterozygotes for F508 and one of the rarer mutations. These frequencies differ slightly from those found in the north of Germany and considerably from those reported from the south of Europe, which seems to be consistent with a north to south decline of the relative abundance of F508. Two patients, age 6 and 25 years, were compound heterozygotes for G542X and N1303K. The clinical features of the 6 year old were characterised by severe gastrointestinal and as yet only mild pulmonary complications whereas the 25 year old manifested severe pulmonary and gastrointestinal symptoms indicating that the N1303K mutation of the C-terminal CFTR nucleotide binding fold significantly impairs protein function in both the pancreas and the lungs.  相似文献   

2.
Cystic fibrosis (CF) is a disorder characterized by elevated sweat electrolytes and thick mucous secretions due to abnormal chloride permeability in epithelial tissues. The gene responsible for this disease, the CF transmembrane conductance regulator (CFTR) was identified by a positional cloning approach 3 years ago. Since that time, over two hundred mutations have been found in CFTR genes from affected individuals. Analysis of these disease-associated mutations has provided new insight into the etiology of this disease and into the mechanisms of epithelial electrolyte secretion.  相似文献   

3.
Identification of mutations causing cystic fibrosis (CF) in the Turkish population is essential for assessment of the molecular basis of CF in Turkey and the development of strategies for prenatal diagnosis and genetic counseling. Here, we present an updated report of mutations found in the Turkish CF population from an extensive screening study of the entire coding region, including exon-intron boundaries and the promoter region. Cases for which mutations could not be identified were also screened for previously defined large alterations and (TG)mTn-M470V loci. This study revealed a total of 27 different mutations accounting for almost 60% of disease genes in the Turkish population. In this study, we also identified the haplotypes associated with 17 mutations and those associated with unknown mutations. The mutation spectrum of CF in Turkey and its associated haplotypes indicated the presence of a major Mediterranean component in the contemporary Turkish population.  相似文献   

4.
5.
Cystic fibrosis (CF)--an autosomal recessive disorder caused by mutations in CF transmembrane conductance regulator (CFTR) and characterized by abnormal chloride conduction across epithelial membranes, leading to chronic lung and exocrine pancreatic disease--is less common in African-Americans than in Caucasians. No large-scale studies of mutation identification and screening in African-American CF patients have been reported, to date. In this study, the entire coding and flanking intronic sequence of the CFTR gene was analyzed by denaturing gradient-gel electrophoresis and sequencing in an index group of 82 African-American CF chromosomes to identify mutations. One novel mutation, 3120+1G-->A, occurred with a frequency of 12.3% and was also detected in a native African patient. To establish frequencies, an additional group of 66 African-American CF chromosomes were screened for mutations identified in two or more African-American patients. Screening for 16 "common Caucasian" mutations identified 52% of CF alleles in African-Americans, while screening for 8 "common African" mutations accounted for an additional 23%. The combined detection rate of 75% was comparable to the sensitivity of mutation analysis in Caucasian CF patients. These results indicate that African-Americans have their own set of "common" CF mutations that originate from the native African population. Inclusion of these "common" mutations substantially improves CF mutation detection rates in African-Americans.  相似文献   

6.
The aim of this study was to evaluate the screening policies of cystic fibrosis (CF) in the Jewish population. The prevalence of mutations that account for CF in Israel have been defined in the past by determining the frequency of CF mutations in affected individuals. This study is a population-based study and is, therefore, different from previous patient-based studies. We found that the CF mutations D1152H, W1089X, and 405 + IG-->A were present in some ethnic groups in which no CF patients carrying these mutations were reported. These facts necessitate a reevaluation of the screening policy regarding the ethnic groups in Israel. We studied 9,430 healthy Jewish Israeli individuals of 36 countries of origin. The prevalence of CF mutations was 1:19, 1:19, 1:28, and 1:42 for the Ashkenazi, Sephardi, North African, and Eastern Jews, respectively. CF mutations were identified in 374 (4.0%) individuals. These included 173 (46.3%) carriers of the W1282X mutation; 110 (29.4%) found to carry delF508; 23 (6.1%) who carried G542X; 22 (5.9%) who carried 3849 + 10Kb (C-->T; 20 (5.3%) who carried D1152H; 10 (2.7%) who carried N1303K; 11 (2.9%) who carried 405 + IG-->A; 4 (1.1%) who carried W1089X; and one (0.3%) who carried S549R. No carriers were detected for the 1717-1G-->A, G85E, and T360K mutations, which were tested for in 7,383, 1,558, and 41 individuals, respectively.  相似文献   

7.
Methods for analysis of multiple cystic fibrosis mutations   总被引:8,自引:2,他引:8  
Summary A large number of mutations causing cystic fibrosis (CF) have been reported. In an attempt to improve methods for genetic diagnosis and for heterozygote screening, we evaluated methods for efficient analysis of the F508, G542X, G551D, R553X, and N1303K mutations. We found that multiple mutations can be analyzed simultaneously using hybridization with allelespecific oligonucleotides. Alternatively all of these mutations can be detected by amplification of DNA followed by restriction enzyme digestion and analysis on polyacrylamide gels. A previously reported method for use of modified primers for DNA amplification to allow detection of virtually any single-base change by restriction enzyme analysis proved particularly useful. The common F508 mutation and three mutations in exon 11 were analyzed using a multiplex amplification reaction followed by double digestion with restriction enzymes and electrophoresis in a single lane on a polyacrylamide gel. In a sample of 439 CF chromosomes from North American Caucasians, the frequencies of various mutations were as follows: F508=75.8%, G542X=2.7%, G551D=3.2%, R553X=1.4%, and N1303K=1.4% for a total of 84.5% detection of CF chromosomes by analysis for these five mutations.  相似文献   

8.
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We have identified in exon 7 two frameshift mutations, one caused by a two-nucleotide insertion and the other caused by a one-nucleotide deletion; these mutations--CF1154insTC and CF1213delT, respectively, are predicted to shift the reading frame of the protein and to introduce UAA(ochre) termination codons at residues 369 and 368.  相似文献   

9.
A simple approach is described to synthesize and clone an inexhaustible supply of any homozygous and/or heterozygous controls diluted with yeast genomic DNA to mimic human genome equivalents for use throughout the entire multiplex mutation assay. As a proof of principle, the 25 cystic fibrosis mutation panel selected by the American College of Medical Genetics and four additional mutant sequences were prepared as a single control mixture. The 29 CFTR mutations were incorporated into 17 gene fragments by PCR amplification of targeted sequences using mutagenic primers on normal human genomic DNA template. Flanking primers selected to bind beyond all published PCR primer sites amplified controls for most assay platforms. The 17 synthesized 433-933-bp CFTR fragments each with one to four homozygous mutant sequences were cloned into nine plasmid vectors at the multiple cloning site and bidirectionally sequenced. Miniplasmid preps from these nine clones were mixed and diluted with genomic yeast DNA to mimic the final nucleotide molar ratio of two CFTR genes in 6 x 10(9) bp total human genomic DNA. This mixture was added to control PCR reactions prior to amplification as the only positive control sample. In this fashion >200 multiplex clinical PCR analyses of >4,000 clinical patient samples have been controlled simultaneously for PCR amplification and substrate specificity for 29 tested mutations without cross contamination. This clinically validated multiplex cystic fibrosis control can be modified readily for different test formats and provides a robust means to control for all mutations instead of rotating human genomic controls each with a fraction of the mutations. This approach allows scores of additional mutation controls from any gene loci to be added to the same mixture annually.  相似文献   

10.
Traffic ATPases constitute a superfamily of transporters that include prokaryotic permeases and medically important eukaryotic proteins, such as the multidrug resistance P-glycoprotein and the cystic fibrosis gene product. We present a structure-function analysis of a member of this superfamily, the prokaryotic histidine permease, using mutations generated both in vitro and in vivo, and assaying several biochemical functions. The analysis supports a previously predicted structural model and allows the assignment of specific functions to several predicted structural features. Mutations in the secondary structure features which form the nucleotide-binding pocket in general cause the loss of ATP binding activity. Mutations in the helical domain retain ATP binding activity. Several mutations have been identified which may affect the signaling mechanism between ATP hydrolysis and membrane translocation. We relate our findings to those emerging from the recent biochemical and genetic analyses of cystic fibrosis mutations.  相似文献   

11.
12.
Recent evidence strongly suggests that the cystic fibrosis gene product (CFTR) is a Cl- channel. Its properties, however, differ from those of a 30-50 pS outwardly rectifying channel previously implicated as defective in cystic fibrosis. It is still uncertain whether the pleiotropic effects of the CF defect, such as increased airway Na+ absorption and mucus sulfation, are secondary to reduced Cl- conductance, or reflect additional functions of CFTR.  相似文献   

13.
Results of mutation analysis in exon 11 of the CF gene have been presented. Using the SSCP technique 18 mutations (of four different types) were detected in cystic fibrosis patients of Polish origin. Thus, we were able to detect in exon 11 about 10% of all CF mutations occurring in the affected population examined.  相似文献   

14.
Summary Three mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were discovered in a pancreas-insufficient patient with cystic fibrosis (CF) who displayed an uncommon combination of almost normal chloride concentration in sweat tests and typical symptoms of gastrointestinal and pulmonary disease. The R553Q mutation was found on the maternal F508-CFTR gene. Codon 553 is located within a consensus motif of the ATP-binding cassette transport proteins at a less conserved position. Other members of this protein superfamily contain a glutamine instead of arginine at the homologous position, suggesting a modulating rather than disease-causing role of the R553Q mutation in CFTR. The amplification refractory mutation system did not detect the R553Q mutation in a further 65 normal, 113 F508, and 91 non-F508 CF chromosomes. The index case carried the R553X nonsense mutation on the paternal chromosome. The R553X mutation was present on a further 9 out of 86 German nonF508 CF chromosomes linked with the XV2c-KM19Mp6d9-J44-GATT haplotypes 2-2-2-1-1 and 1-1-2-1-2. The location of R553X on separate haplotypes including both alleles of the intragenic GATT repeat suggests an ancient and/or multiple origins of the R553X mutations. The association of the genotype of the CFTR mutation and the clinical phenotype was assessed for the patients carrying the related genotypes F508/F508 (n = 80), F508/R553X (n = 9) and F508-R553Q/R553X (n = 1). In compound heterozygotes, the median chloride concentration in pilocarpine iontophoresis sweat tests was significantly lower than in the F508 homozygotes (P < 0.01). The patient groups were significantly different with respect to the distributions of the centiles for height (P < 0.001) and weight (P < 0.01) as the most sensitive predictors of the course and prognosis in CF. Growth retardation was more pronounced in the compound heterozygotes.  相似文献   

15.
The identification of the cystic fibrosis locus (CF) provides a model for the study of single gene defects where the biochemical lesion is not known. Using families each of which has several affected siblings, it was possible to exclude a number of 'candidate genes' which had previously been proposed as possible sites of the CF mutation. Exclusion mapping of the genome using polymorphic protein and DNA markers showed that CF is on the long arm of human chromosome 7. The most closely linked flanking markers were identified, and human chromosome fragments containing them (and therefore the CF locus) were isolated in rodent cell lines by chromosome-mediated gene transfer. The transgenome was then analysed using cosmid contig mapping, pulse-field gel electrophoresis, HTF island identification and linkage disequilibrium. In this way, a candidate coding sequence has been identified which always segregates with CF.  相似文献   

16.
17.
18.
Summary We have developed a simple rapid DNA screening test that allows us simultaneously to analyze seven CF mutations (deltaF508, R347P, S549N, G551D, R553X, R334W, 444delA) that together account for about 60% of all CF mutations in the Italian population. It consists of three steps: multiplex polymerase chain reaction (PCR) amplification of exons 4, 7, 10 and 11; restriction endonuclease digestion of the PCR products; and vertical polyacrylamide gel electrophoresis analysis. We have used our multiplex assay for analyzing 15 CF chromosomes (non delta F508) and have found 3 cases of the R553X mutation; the latter have been confirmed by amplification and digestion of exon 11.  相似文献   

19.
20.
As the most common lethal autosomal recessive disorder in North America, cystic fibrosis (CF) is an obvious candidate for general population carrier screening. Although the identification of the causative gene has made detection of asymptomatic carriers possible, the extreme heterogeneity of its mutations has limited the sensitivity of the available DNA screening tests and has called into question their utility when they are applied to patients with no family history of the disease. The purpose of this study was to determine the technical feasibility, patient acceptance and understanding, and psychosocial impact of large-scale CF carrier screening in an ethnically diverse pregnant population. A total of 4,739 pregnant women attending prenatal clinics located in both an academic medical center and a large HMO were invited in person to participate. Of this group, 3,543 received CF instruction and assessments of knowledge and mood, and 3,192 underwent DNA testing for the six most common CF mutations, by means of a noninvasive PCR-based reverse-dot-blot method. Overall participation rates (ranging from 53% at the HMO to 77% at the academic center) and consent rates for DNA testing after CF instruction (>98%) exceeded those of most other American studies. The PCR-based screening method worked efficiently on large numbers of samples, and 55 carriers and one at-risk couple were identified. Understanding of residual risk, anxiety levels, and overall satisfaction with the program were acceptable across all ethnic groups. Our strategy of approaching a motivated pregnant population in person with a rapid and noninvasive testing method may provide a practical model for developing a larger CF screening program targeting appropriate high-risk groups at the national level, and may also serve as a paradigm for population-based screening of other genetically heterogeneous disorders in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号