首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian cancer is the deadliest gynecologic cancer worldwide, and the therapeutic options are limited. PARP inhibitor (PARPi) represents an effective therapeutic strategy and has been approved for maintenance therapy. However, the intrinsic or acquired resistance to PARPi becomes a big challenge. To investigate the mechanisms for PARPi resistance, we analysed public databases and established Olaparib-resistant ovarian cancer cells for exploration. Our results showed that the inflammatory pathway and adenosine receptor A2b (Adora2b/A2B) expression were significantly increased in Olaparib-resistant cells. A2B was highly expressed in recurrent ovarian tumours and negatively correlated with the clinical outcomes in cancer patients. Olaparib treatment enhanced A2B expression through NF-κB activation. The elevated A2B contributed to Olaparib resistance by sensing adenosine signal and promoting tumour cell survival, growth and migration via IL-6-STAT3 signalling. Therefore, inhibition of A2B-IL-6-STAT3 axis could overcome Olaparib resistance and synergize with Olaparib to reduce cancer cell growth and lead to cell death. Our findings reveal a critical role of A2B signalling in mediating PARPi resistance independent of DNA damage repair, providing insights into developing novel therapies in ovarian cancers.  相似文献   

2.
聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。  相似文献   

3.
PARP inhibitors (PARPi) are currently used as first-line therapy for advanced and recurrent ovarian cancer, but the clinical efficacy is limited by drug resistance. We aimed to investigate the role of KIAA1529 in PARPi resistance in ovarian cancer. The expression of KIAA1529 was determined in ovarian cancer cells using qRT‒PCR and western blotting. Immunohistochemistry was used to examine the expression of KIAA1529 in primary ovarian cancer and recurrent ovarian cancer tissues. The effects of KIAA1529 on PARPi resistance were evaluated by knocking down KIAA1529 expression in ovarian cancer cells and assessing cell viability by CCK8 assays, apoptosis by flow cytometry, and homologous recombination (HR) repair by immunofluorescence analysis. The interaction between KIAA1529 and RAD51 was examined by western blotting. KIAA1529 was confirmed to be expressed in all ovarian cancer cell lines, and high expression of KIAA1529 was observed in recurrent ovarian cancer tissues. Inhibiting KIAA1529 expression increased the sensitivity of ovarian cancer cells to PARPi treatment. Furthermore, KIAA1529 increased the expression of the downstream effector RAD51 via Aurora-A, and HR was restored in ovarian cancer cells. This study demonstrates that KIAA1529 regulates RAD51 expression through Aurora-A to restore HR, which confers resistance to PARPi in ovarian cancer cells. These findings could provide a novel therapeutic target to overcome PARPi resistance in ovarian cancer.  相似文献   

4.
Glioblastoma-initiating cells (GICs) are self-renewing tumorigenic sub-populations, contributing to therapeutic resistance via decreased sensitivity to ionizing radiation (IR). GIC survival following IR is attributed to an augmented response to genotoxic stress. We now report that GICs are primed to handle additional stress due to basal activation of single-strand break repair (SSBR), the main DNA damage response pathway activated by reactive oxygen species (ROS), compared with non-GICs. ROS levels were higher in GICs and likely contributed to the oxidative base damage and single-strand DNA breaks found elevated in GICs. To tolerate constitutive DNA damage, GICs exhibited a reliance on the key SSBR mediator, poly-ADP-ribose polymerase (PARP), with decreased viability seen upon small molecule inhibition to PARP. PARP inhibition (PARPi) sensitized GICs to radiation and inhibited growth, self-renewal, and DNA damage repair. In vivo treatment with PARPi and radiotherapy attenuated radiation-induced enrichment of GICs and inhibited the central cancer stem cell phenotype of tumor initiation. These results indicate that elevated PARP activation within GICs permits exploitation of this dependence, potently augmenting therapeutic efficacy of IR against GICs. In addition, our results support further development of clinical trials with PARPi and radiation in glioblastoma.  相似文献   

5.
Monotherapy with poly ADP-ribose polymerase (PARP) inhibitors results in a limited objective response rate (≤60% in most cases) in patients with homologous recombination repair (HRR)-deficient cancer, which suggests a high rate of resistance in this subset of patients to PARP inhibitors (PARPi). To overcome resistance to PARPi and to broaden their clinical use, we performed high-throughput screening of 99 anticancer drugs in combination with PARPi to identify potential therapeutic combinations. Here, we found that GSK3 inhibitors (GSK3i) exhibited a strong synergistic effect with PARPi in a panel of colorectal cancer (CRC) cell lines with diverse genetic backgrounds. The combination of GSK3β and PARP inhibition causes replication stress and DNA double-strand breaks, resulting in increased anaphase bridges and abnormal spindles. Mechanistically, inhibition or genetic depletion of GSK3β was found to impair the HRR of DNA and reduce the mRNA and protein level of BRCA1. Finally, we demonstrated that inhibition or depletion of GSK3β could enhance the in vivo sensitivity to simmiparib without toxicity. Our results provide a mechanistic understanding of the combination of PARP and GSK3 inhibition, and support the clinical development of this combination therapy for CRC patients.Subject terms: Cancer therapeutic resistance, Targeted therapies  相似文献   

6.
多腺苷二磷酸核糖聚合酶(poly(ADP-ribose) polymerase, PARP)抑制剂是一类靶向 DNA 修复缺陷癌细胞的新型药物。早期研究表明 PARP 抑制剂取得了令人满意的结果,然而药物治疗后出现的耐药机制尚未完全揭露。因此,有必要寻找更多的靶向药物与PARP 抑制剂联用,以达到杀伤肿瘤细胞的目的。本文基于379种小分子化合物和PARP抑制剂尼拉帕尼(Niraparib)的联合用药筛选,通过细胞增殖实验、克隆存活实验和免疫荧光染色等方法筛选潜在的具有协同PARP抑制剂杀伤卵巢癌细胞的药物。结果表明,其中有8种小分子化合物具有较好的联合用药效果,包括2种已经报道的与PARP抑制剂具有联用效果的小分子化合物STF-118804和Disulfiram。我们从中选取原肌球蛋白受体激酶 A (tropomyosin receptor kinase A,TrKA)的抑制剂GW441756,进行了多种肿瘤细胞的验证以及初步机制的探究。Niraparib和TrKA抑制剂的联合用药显著增加肿瘤细胞对PARP抑制剂的敏感性(P<0.05)。从机制上分析,联合用药组细胞内γH2AX foci的数目显著增加(P<0.05),说明TrKA抑制剂阻碍损伤后细胞的DNA损伤修复能力;同时,联合用药显著降低细胞内同源重组修复(homologous recombination repair,HRR)标志物RAD51 foci(P<0.05)的形成,说明TrKA抑制剂可能通过抑制细胞的HRR效率阻碍细胞的DNA损伤修复。本研究的结果提示,TrKA抑制剂可以作为一种与PARP抑制剂联用杀伤卵巢癌细胞的潜在药物。  相似文献   

7.
Cisplatin (DDP) is the first line chemotherapeutic drug for several cancers, including gastric cancer (GC). Unfortunately, the rapid development of drug resistance remains a significant challenge for the clinical application of cisplatin. There is an urgent need to develop new strategies to overcome DDP resistance for cancer treatment. In this study, four types of human GC cells have been divided into naturally sensitive or naturally resistant categories according to their responses to cisplatin. PARP1 activity (poly (ADP-ribose), PAR) was found to be greatly increased in cisplatin-resistant GC cells. PARP1 inhibitors significantly enhanced cisplatin-induced DNA damage and apoptosis in the resistant GC cells via the inhibition of PAR. Mechanistically, PARP1 inhibitors suppress DNA-PKcs stability and reduce the capability of DNA double-strand break (DSB) repair via the NHEJ pathway. This was also verified in BGC823/DDP GC cells with acquired cisplatin resistance. In conclusion, we identified that PARP1 is a useful interceptive target in cisplatin-resistant GC cells. Our data provide a promising therapeutic strategy against cisplatin resistance in GC cells that has potential translational significance.  相似文献   

8.
Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP) inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain cancers.  相似文献   

9.
Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.  相似文献   

10.
《Translational oncology》2020,13(1):113-121
CHFR is a tumor suppressor that not only recognizes poly(ADP-ribosylation) (PARylation) signals at the sites of DNA damage but also is downregulated in many types of cancer. However, the underlying mechanism linking its role in PARylation-mediated DNA damage repair and tumor suppression is unclear. Here, we examined a panel of gastric cancer cell lines as well as primary tissue samples from gastric cancer patients, and found that CHFR expression was silenced by DNA hypermethylation in gastric cancer including 38.46% of primary gastric cancers. DNMT1 was associated with aberrant methylation of CHFR, and the expression of CHFR was restored by DNMT1 inhibitor 5-aza-2-deoxycytidine (5-aza-CdR) treatment. Moreover, we found that loss of CHFR abolished DNA damage repair and sensitized gastric tumor cells to PARP inhibitor treatment. Thus, our study reveals a potential therapeutic approach for treating gastric cancer with PARP inhibitor and lacking CHFR can serve as a biomarker for predicting the efficacy of PARP inhibitor on the gastric tumor treatment in future.  相似文献   

11.
Poly (ADP-ribose) polymerase inhibitors (PARPi) have showed clinical benefit as maintenance therapy in advanced ovarian cancer by impairing the homologous recombination (HR) pathway. Pyruvate kinase M2 (PKM2), the significant cancer metabolic biomarker, integrates with DNA damage to directly promote HR. We aimed to investigate the role and molecular mechanism of PKM2 downregulation on sensitization of ovarian cancer cells to PARPi. Inhibitory effects in vitro were assessed by cell viability, clone formation, transwell assay, and flow cytometry. Downregulation of PKM2 by siRNA or small molecular inhibitor shikonin (Sk) enhanced anti-tumour activity of olaparib (Ola) in ovarian cancer cells. Silencing PKM2 or Sk synergized with Ola and reduced cell growth, colony formation and migration, and induced apoptosis. Western blot and immunofluorescence demonstrated that inhibition of PKM2 amplified Ola-induced γH2AX and phospho-ATM (p-ATM) activation and interfered with BRCA1 accumulation in the nucleus. A xenograft animal model demonstrated in vivo antitumor combination effect of Sk and Ola. Furthermore, Western blot and immunofluorenscent analyses of tissue samples revealed that treatment of Sk increased DNA damage, reduced expression of BRCA1 and PKM2. Therefore, this study identified that PKM2 downregulation is a novel therapeutic strategy to enhance Ola effectiveness in treating ovarian cancer.  相似文献   

12.
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC.Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi.This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.  相似文献   

13.
14.
Loss of phosphatase and tensin homolog (PTEN) impairs DNA double-strand repair and confers sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). However, PARPis also hyperactivate the MAPK and PI3K/AKT/mTOR pathways in PTEN-deficient endometrial carcinoma (EC), which allows the emergence of PARPi resistance. BCL-2–associated death promoter (BAD), integrates the common cell survival effects of the RAS/MEK/MAPK and PI3K/AKT/mTOR pathways. Herein, it was observed that increased BADSer99 (BADS99) phosphorylation in EC cells was significantly associated with PTEN-deficient status. Forced expression of phosphorylation deficient human BADS99A in PTEN-deficient EC cells significantly increased CASPASE 3/7 activity and decreased EC cell viability. Using NPB as a pharmacological inhibitor of pBADS99 phosphorylation, it was demonstrated that NPB synergized with PARPis (Olaparib, Rucaparib and Talazoparib) to enhance PARPi IC50 up to 60-fold and decreased survival, foci formation, and growth in 3D ex vivo culture of PTEN-deficient EC cells. Combined NPB-PARPi treatment of PTEN-deficient EC cells stimulated apoptosis and promoted DNA damage by impairment of homologous recombination. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease system it was demonstrated that deletion of PTEN in PTEN replete EC cells enhanced the efficacy of combined NPB-PARPi treatment. Furthermore, combined inhibition of BADS99 phosphorylation and PARP ablated xenograft growth of PTEN-deficient EC cells. Similarly, a combination of NPB and PARPis significantly suppressed the growth of PTEN deficient patient-derived EC organoids. Hence, combined inhibition of BADS99 phosphorylation and PARP represents a rational and efficacious strategy to improve the prognosis of recurrent EC patients.Subject terms: Endometrial cancer, Targeted therapies  相似文献   

15.
Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.  相似文献   

16.
PARP1 mediates poly-ADP-ribosylation of proteins on chromatin in response to different types of DNA lesions. PARP inhibitors are used for the treatment of BRCA1/2-deficient breast, ovarian, and prostate cancer. Loss of DNA replication fork protection is proposed as one mechanism that contributes to the vulnerability of BRCA1/2-deficient cells to PARP inhibitors. However, the mechanisms that regulate PARP1 activity at stressed replication forks remain poorly understood. Here, we performed proximity proteomics of PARP1 and isolation of proteins on stressed replication forks to map putative PARP1 regulators. We identified TPX2 as a direct PARP1-binding protein that regulates the auto-ADP-ribosylation activity of PARP1. TPX2 interacts with DNA damage response proteins and promotes homology-directed repair of DNA double-strand breaks. Moreover, TPX2 mRNA levels are increased in BRCA1/2-mutated breast and prostate cancers, and high TPX2 expression levels correlate with the sensitivity of cancer cells to PARP-trapping inhibitors. We propose that TPX2 confers a mitosis-independent function in the cellular response to replication stress by interacting with PARP1.  相似文献   

17.
18.
Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that is rapidly activated by DNA strand breaks and signals the presence of DNA lesions by attaching ADP-ribose units to chromatin-associated proteins. The therapeutic applications of PARP inhibitors in potentiating the killing action of ionizing radiation have been well documented and are attracting increasing interest as a cancer treatment. However, the initial kinetics underlying the recognition of multiple DNA lesions by PARP1 and how inhibition of PARP potentiates the activity of DNA-damaging agents are unknown. Here we report the spatiotemporal dynamics of PARP1 recruitment to DNA damage induced by laser microirradiation in single living cells. We provide direct evidence that PARP1 is able to accumulate at a locally induced DNA double strand break. Most importantly, we observed that the rapid accumulation of MRE11 and NBS1 at sites of DNA damage requires PARP1. By determining the kinetics of protein assembly following DNA damage, our study reveals the cooperation between PARP1 and the double strand break sensors MRE11 and NBS1 in the close vicinity of a DNA lesion. This may explain the sensitivity of cancer cells to PARP inhibitors.  相似文献   

19.
PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-tumour activity in individuals whose cancers have a defect in the homologous recombination DNA repair pathway. Here, we describe the current consensus as to how PARPi work and how drug resistance to these agents emerges. We discuss the need to refine the current repertoire of clinical-grade companion biomarkers to be used with PARPi, so that patient stratification can be improved, the early emergence of drug resistance can be detected and dose-limiting toxicity can be predicted. We also highlight current thoughts about how PARPi resistance might be treated.  相似文献   

20.
《Autophagy》2013,9(2):214-224
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号