首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cloning and sequencing of the Pseudomonas aeruginosa PAK pilin gene   总被引:38,自引:0,他引:38  
A 1.2-kilobase (kb) HindIII restriction fragment containing the pilin gene from Pseudomonas aeruginosa PAK has been cloned and sequenced. The pilin protein is 144 amino acids in length with a positively charged leader sequence of 6 amino acids. There is probably only one copy of the gene per chromosome.  相似文献   

3.
The cytochrome c-551 gene from Pseudomonas aeruginosa was cloned by using two oligonucleotide probes, which had been synthesized based on the known primary structure of the protein. The restriction map of the cloned DNA and sequence analysis showed that the cytochrome c-551 gene is located 50 bp downstream of the nitrite reductase gene, which has recently been cloned and sequenced. DNA sequence analysis also indicated that cytochrome c-551 is synthesized in vivo as a precursor having an amino-terminal signal sequence consisting of 22 amino acid residues.  相似文献   

4.
5.
The structural gene for the allosteric citrate synthase of Pseudomonas aeruginosa has been cloned from a genomic library by using the Escherichia coli citrate synthase gene as a hybridization probe under conditions of reduced stringency. Subcloning of portions of the original 10-kilobase-pair (kbp) clone led to isolation of the structural gene, with its promoter, within a 2,083-bp length of DNA flanked by sites for KpnI and BamHI. The nucleotide sequence of this fragment is presented; the inferred amino acid sequence was 70 and 76% identical, respectively, with the citrate synthase sequences from E. coli and Acinetobacter anitratum, two other gram-negative bacteria. DEAE-cellulose chromatography of P. aeruginosa citrate synthase from an E. coli host harboring the cloned P. aeruginosa gene gave three peaks of activity. All three enzyme peaks had subunit molecular weights of 48,000; the proteins were identical by immunological criteria and very similar in kinetics of substrate saturation and NADH inhibition. Because the cloned gene contained only one open reading frame large enough to encode a polypeptide of such a size, the three peaks must represent different forms of the same protein. A portion of the cloned P. aeruginosa gene was used as a hybridization probe under stringent conditions to identify highly homologous sequences in genomic DNA of a second strain classified as P. aeruginosa and isolates of P. putida, P. stutzeri, and P. alcaligenes. When crude extracts of each of these four isolates were mixed with antiserum raised against purified P. aeruginosa citrate synthase, however, only the P. alcaligenes extract cross-reacted.  相似文献   

6.
The production and spectroscopic properties of an L-selenomethionine-containing homolog of Pseudomonas aeruginosa azurin are described. The amino acid substitution was carried out by developing an L-methionine-dependent bacterial strain from a fully functional ATCC culture. Uptake studies monitored using L-[75Se]methionine indicated that L-selenomethionine was incorporated into the protein synthetic pathway of Pseudomonas bacteria in a manner analogous to L-methionine. Several batches of bacteria were grown, and one sample of isolated and purified selenoazurin (azurin in which methionine was substituted by selenomethionine) was found (by neutron activation analysis) to contain 5.2 +/- 0.8 seleniums/copper. Correspondingly, a residual 0.35 methionines, relative to 6.0 in the native protein, were found by amino acid analysis in this azurin sample. The redox potential and extinction coefficient of this selenoazurin were found to be 333 +/- 1 mV (pH 7.0, I = 0.22) and 5855 +/- 160 M-1 cm-1 at 626 +/- 1 nm, respectively. Visible electronic, CD, and EPR spectra are reported and Gaussian curve fitting to the former spectrum allowed assignment of the selenomethionine Se----Cu(II) transition to a band found at 18034 cm-1, based upon an observed 450 cm-1 shift to the red from the analogous band position in the native protein. The data are consistent with a relatively more covalent copper site stabilizing the reduced, Cu(I), form in the selenoprotein. A role for the methionine as a modulator of the blue copper site redox potential by metal----ligand back bonding from Cu(I) is discussed in terms of a ligand sphere which limits the valence change at copper to much less than 1 during a redox cycle.  相似文献   

7.
The interaction between azurin from Pseudomonas aeruginosa and Ag(I), Cu(II), Hg(II), was investigated as a function of protein state, i.e. apo-, reduced and oxidised azurin. Two different metal binding sites, characterized by two different spectroscopic absorbancies, were detected: one is accessible to Ag(I) and Cu(II) but not to Hg(II); the other one binds Ag(I) and Hg(II) but not copper. When added in stoichiometric amount, Ag(I) shows high affinity for the redox center of apo-azurin, to which it probably binds by the -SH group of Cys112; it can displace Cu(I) from reducedazurin, while it does not bind to the redox center of oxidizedazurin. Kinetic experiments show that Ag(I) binding to the reduced form is four times faster than binding to the apo-form. This result suggests that metal binding requires a conformational rearrangement of the active site of the azurin. Interaction of Ag(I) or Hg(II) ions to the second metal binding site, induces typical changes of UV spectrum and quenching of fluorescence emission.  相似文献   

8.
The gene cluster for methylamine utilization (mau genes) has been cloned from the obligate methylotrophic bacterium Methylobacillus flagellatum KT. Partial sequence data showed that the organization of these genes was similar to that found in Methylophilus methylotrophus W3A1-NS, including the lack of a gene for amicyanin, which had been thought to be the electron acceptor for methylamine dehydrogenase in M. flagellatum KT. However, a gene encoding azurin was discovered at the 3' end of the mau gene cluster, transcribed in the opposite orientation. A mutant with a defect in this gene showed impaired growth on methylamine, suggesting that azurin is involved in methylamine oxidation in M. flagellatum KT.  相似文献   

9.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

10.
The reaction between ferric Pseudomonas cytochrome c peroxidase and reduced azurin was investigated by static titration, rapid scan, and stopped flow techniques as well as circular dichroism measurements. Kinetics of the reduction of the enzyme under pseudo-first order conditions reveals a biphasic logarithmic curve indicating that the reaction between enzyme and azurin is complex and comprises of two reactions, one rapid and a slower one. The relative portion of the fast phase from the overall reaction increases with increasing azurin concentration. Kinetic results can be explained by postulating the presence of two different enzyme forms which are slowly interconvertible. Both enzymatic forms form a complex with reduced azurin. The electron transfer between proteins occurs within the molecular complex of azurin and the peroxidase.  相似文献   

11.
The gene for the Pseudomonas aeruginosa outer membrane lipoprotein I was isolated from a genomic library in the phage lambda EMBL3 vector and subsequently subcloned in the low copy-number, wide host-range plasmid vector, pKT240. The cloned gene was highly expressed, resulting in the production of a low molecular-weight protein (8 kD) that was found to be associated with the outer membrane. Sequence analysis showed an open reading frame of 83 amino acids with a putative N-terminal hydrophobic signal peptide of 19 residues immediately followed by the lipoprotein consensus sequence, GLY-CYS-SER-SER (residues 19-22). The predicted amino acid composition of the mature polypeptide and that of the purified lipoprotein I of P. aeruginosa (Mizuno and Kageyama, 1979) were identical. In contrast with other Gram-negative outer membrane lipoproteins, conformation predictions suggested that the mature protein was a single alpha helix.  相似文献   

12.
《Gene》1996,172(1):165-166
The CDP-diglyceride synthetase (CDS)-encoding gene (cds) from Pseudomonas aeruginosa PAO1 was cloned and sequenced. The gene possessed an open reading frame of 813 bp capable of encoding a putative polypeptide of 271 amino acids (aa) (28 699 Da). The deduced aa sequence of CDS revealed a 67% similarity (45% identity) to Escherichia coli CDS.  相似文献   

13.
A gene of organic solvent-stable protease (PST-01 protease) secreted by Pseudomonas aeruginosa PST-01 was cloned and its nucleotide was sequenced. The nucleotide sequence analysis revealed that the PST-01 protease was a pseudolysin, which was an elastase produced by P. aeruginosa and was well characterized by the previous investigators. The PST-01 protease produced in recombinant Escherichia coli was not secreted into the extracellular medium, but its proenzyme was released by the lysis of the cells and became a 33.1kDa mature enzyme autoproteolytically. Its characteristics including organic solvent stability were as same as those of the PST-01 protease secreted by P. aeruginosa PST-01.  相似文献   

14.
Cassette mutagenesis was used to exchange the suggested copper ligand Met121 in azurin to all other amino acids, and a stop codon. The mutant proteins were characterized by optical absorption spectroscopy and EPR. At low pH, all mutants exhibit the characteristics of a blue type 1 copper protein, indicating that methionine is not needed to create a blue copper site. At high pH, the Glu121 and the Lys121 mutants constitute a new form of protein-bound copper that is outside the range of type 1 copper.  相似文献   

15.
Abstract

In this study, azurin, a bacteriocin with anticancer property, was produced by food-grade Lactococcus lactis using the Nisin Controlled Gene Expression (NICE) System. In addition, the antibacterial and cytotoxic properties of recombinant azurin in the culture supernatant were also investigated. Azurin gene from Pseudomonas aeruginosa was cloned into the pNZ8149 vector and the resulting recombinant DNA was transformed into food grade L. lactis NZ3900. The expression of azurin protein was induced by the optimum concentration of nisin for 3?h. Inhibition zones for Escherichia coli and Bacillus cereus were observed at 5.0 and 10?mg/mL concentrations of lyophilized supernatants containing azurin, but no inhibition zone at azurin-free lyophilized supernatants. When HUVEC, HT29, HCT116, and MCF7 cell lines were treated with lyophilized culture supernatants with azurin or without azurin, cell viability decreased with increasing concentrations of the supernatant. Furthermore, the supernatants containing azurin showed more anti-proliferative effect than the azurin-free supernatants. This work provides a practicable method to produce recombinant azurin in the food grade L. lactis strain. As a result, the recombinant L. lactis strain, producing azurin, can be used in the investigation of food biopreservatives and in the development of a therapeutic probiotic.  相似文献   

16.
The nitrite oxidizes reduced azurin and cytochrome c-551 from Pseudomonas aeruginosa. The effects of pH, ionic strength and concentrations of nitrite, EDTA and the protein on the oxidation were investigated. The results obtained indicate that nitrite interacts not only with the terminal electron carrier of the nitrite reducing chain (nitrite reductase, cytochrome cd1) but also with the intermediate electron carrier components of the chain (azurin and cytochrome c-551).  相似文献   

17.
An 8.3 Kb DNA fragment was cloned from Pseudomonas aeruginosa IFO 3455. This fragment-containing Escherichia clone, pEL2, produced a high level of elastase activity. A smaller EcoRI-KpnI fragment was subcloned into pUC118 and E. coli HB101 was transformed with the plasmid. A deletion mutant clone was also constructed in the same bacteria. These deletion mutants were tested for elastase activity and it became clear that the full length of the elastase gene was 1.0-1.3 Kb. DNA sequencing analysis revealed that this DNA fragment contains the DNA sequence coding N-terminal amino acid sequence of the elastase protein.  相似文献   

18.
A recA-like gene from Pseudomonas aeruginosa was cloned and identified by means of interspecific complementation of gene recA repair defect in Escherichia coli. The gene was mapped in the PvuII-HindIII Ps. aeruginosa chromosome fragment of 1.5 kbp in length. Having been recloned in pUC18 or 19 plasmids in either of possible orientations, this fragment was shown to complement three different defects of E. coli recA mutants: in repair, recombination and SOS functions.  相似文献   

19.
We previously reported the purification and characterization of a novel type of alkaline ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373). Here, we report the molecular cloning, sequencing, and expression of the gene encoding the ceramidase of this strain. Specific oligonucleotide primers were synthesized using the peptide sequences of the purified ceramidase obtained by digestion with lysylendopeptidase and used for polymerase chain reaction. DNA fragments thus amplified were used as probes to clone the gene encoding the ceramidase from a genomic library of strain AN17. The open reading frame of 2,010 nucleotides encoded a polypeptide of 670 amino acids including a signal sequence of 24 residues, 64 residues of which matched the amino acid sequence determined for the purified enzyme. The molecular weight of the mature enzyme was estimated to be 70,767 from the deduced amino acid sequence. Expression of the ceramidase gene in Escherichia coli, resulted in production of a soluble enzyme with the identical N-terminal amino acid sequence. Recombinant ceramidase was purified to homogeneity from the lysate of E. coli cells and confirmed to be identical to the Pseudomonas enzyme in its specificity and other enzymatic properties. No significant sequence similarities were found in other known functional proteins including human acid ceramidase. However, we found a sequence homologous to the ceramidase in hypothetical proteins encoded in Mycobacterium tuberculosis, Dictyostelium discoideum, and Arabidopsis thaliana. The homologue of the ceramidase gene was thus cloned from an M. tuberculosis cosmid and expressed in E. coli, and the gene was demonstrated to encode an alkaline ceramidase. This is the first report for the cloning of an alkaline ceramidase.  相似文献   

20.
The electron-transfer reaction between azurin and cytochrome c1 isolated from Pseudomonas aeruginosa was investigated by rapid-reaction techniques. Temperture-jump studies clearly reveal two chemical relaxations, the amplitudes of which have ikentical spectral distributions, but relaxation times show different dependencies on reactant concentrations. Stopped experiments also showed complex kinetics. A model is proposed which is consistent with the kinetic and equilibrium data obtained. The central feature of this model is the proposal that two intercenvertible forms of reduced azurin exist in solution, only one of which si able to participate directly in the electron-transfer reaction with cytochrome c-551. Support for the hypothesis that two forms of reduced azurin exist is derived from studies on the electron-transfer reaction between azurin and Pseudomonas cytochrome oxidase. The possible physiological significance of such a situation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号