首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forests play a key role in regulating the global carbon cycle, a substantial portion of which is stored in aboveground biomass (AGB). It is well understood that biodiversity can increase the biomass through complementarity and mass‐ratio effects, and the contribution of environmental factors and stand structure attributes to AGB was also observed. However, the relative influence of these factors in determining the AGB of Quercus forests remains poorly understood. Using a large dataset retrieved from 523 permanent forest inventory plots across Northeast China, we examined the effects of integrated multiple tree species diversity components (i.e., species richness, functional, and phylogenetic diversity), functional traits composition, environmental factors (climate and soil), stand age, and structure attributes (stand density, tree size diversity) on AGB based on structural equation models. We found that species richness and phylogenetic diversity both were not correlated with AGB. However, functional diversity positively affected AGB via an indirect effect in line with the complementarity effect. Moreover, the community‐weighted mean of specific leaf area and height increased AGB directly and indirectly, respectively; demonstrating the mass‐ratio effect. Furthermore, stand age, density, and tree size diversity were more important modulators of AGB than biodiversity. Our study highlights that biodiversity–AGB interaction is dependent on the regulation of stand structure that can be even more important for maintaining high biomass than biodiversity in temperate Quercus forests.  相似文献   

2.
Timber harvesting can influence headwater streams by altering stream productivity, with cascading effects on the food web and predators within, including stream salamanders. Although studies have examined shifts in salamander occupancy or abundance following timber harvest, few examine sublethal effects such as changes in growth and demography. To examine the effect of upland harvesting on growth of the stream‐associated Ouachita dusky salamander (Desmognathus brimleyorum), we used capture–mark–recapture over three years at three headwater streams embedded in intensely managed pine forests in west‐central Arkansas. The pine stands surrounding two of the streams were harvested, with retention of a 14‐ and 21‐m‐wide forested stream buffer on each side of the stream, whereas the third stream was an unharvested control. At the two treatment sites, measurements of newly metamorphosed salamanders were on average 4.0 and 5.7 mm larger post‐harvest compared with pre‐harvest. We next assessed the influence of timber harvest on growth of post‐metamorphic salamanders with a hierarchical von Bertalanffy growth model that included an effect of harvest on growth rate. Using measurements from 839 individual D. brimleyorum recaptured between 1 and 6 times (total captures, n = 1229), we found growth rates to be 40% higher post‐harvest. Our study is among the first to examine responses of individual stream salamanders to timber harvesting, and we discuss mechanisms that may be responsible for observed shifts in growth. Our results suggest timber harvest that includes retention of a riparian buffer (i.e., streamside management zone) may have short‐term positive effects on juvenile stream salamander growth, potentially offsetting negative sublethal effects associated with harvest.  相似文献   

3.
Biological invasions are one of the major threats to biodiversity worldwide and contribute to changing community patterns and ecosystem processes. However, it is often not obvious whether an invader is the “driver” causing ecosystem changes or a “passenger” which is facilitated by previous ecosystem changes. Causality of the impact can be demonstrated by experimental removal of the invader or introduction into a native community. Using such an experimental approach, we tested whether the impact of the invasive plant Impatiens glandulifera on native vegetation is causal, and whether the impact is habitat‐dependent. We conducted a field study comparing invaded and uninvaded plots with plots from which I. glandulifera was removed and plots where I. glandulifera was planted within two riparian habitats, alder forests and meadows. A negative impact of planting I. glandulifera and a concurrent positive effect of removal on the native vegetation indicated a causal effect of I. glandulifera on total native biomass and growth of Urtica dioica. Species α‐diversity and composition were not affected by I. glandulifera manipulations. Thus, I. glandulifera had a causal but low effect on the native vegetation. The impact depended slightly on habitat as only the effect of I. glandulifera planting on total biomass was slightly stronger in alder forests than meadows. We suggest that I. glandulifera is a “back‐seat driver” of changes, which is facilitated by previous ecosystem changes but is also a driver of further changes. Small restrictions of growth of the planted I. glandulifera and general association of I. glandulifera with disturbances indicate characteristics of a back‐seat driver. For management of I. glandulifera populations, this requires habitat restoration along with removal of the invader.  相似文献   

4.
Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density‐dependent mortality of conspecific seedlings (C‐NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper‐diversity in many tropical forests. A key question is whether fungal pathogen‐mediated C‐NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C‐NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species‐rich forests of South East Asia. We demonstrate species‐specific responses of seedlings to fungicide and density treatments, generating weak negative density‐dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen‐Connell mechanisms structure the plant communities of this globally important forest type.  相似文献   

5.
Wind damage from cyclones can devastate the forest canopy, altering environmental conditions in the understory that affect seedling growth and plant community regeneration. To investigate the impact of hurricane‐induced increases in light and soil nutrients as a result of canopy defoliation, we conducted a two‐way factorial light and nutrient manipulation in a shadehouse experiment. We measured seedling growth of the dominant canopy species in the four Everglades forest communities: pine rocklands (Pinus elliottii var densa), cypress domes (Taxodium distichum), hardwood hammocks, and tree islands (Quercus virginiana and Bursera simaruba). Light levels were full sun and 50% shade, and nutrient levels coupled with an additional set of individuals that were subjected to a treatment mimicking the sudden effects of canopy opening from hurricane‐induced defoliation and the corresponding nutrient pulse. Seedlings were measured weekly for height growth and photosynthesis, with seedlings being harvested after 16 weeks for biomass, leaf area, and leaf tissue N and 13C isotope ratio. Growth rates and biomass accumulation responded more to differences in soil nutrients than differences in light availability, with largest individuals being in the high nutrient treatments. For Bsimaruba and P. elliottii, the highest photosynthetic rates occurred in the high light, high nutrient treatment, while Tdistichum and Qvirginiana photosynthetic rates were highest in low light, high nutrient treatment. Tissue biomass allocation patterns remained similar across treatments, except for Qvirginiana, which altered above‐ and belowground biomass allocation to increase capture of limiting soil and light resources. In response to the hurricane simulation treatment, height growth increased rapidly for Qvirginiana and Bsimaruba, with nonsignificant increases for the other two species. We show here that ultimately, hurricane‐adapted, tropical species may be more likely to recolonize the forest canopy following a large‐scale hurricane disturbance.  相似文献   

6.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

7.
The strength of biodiversity–biomass production relationships increases with increasing environmental stress and time. However, we know little about the effects of abiotic (e.g., climate) and biotic (e.g., species pool and community composition) factors on this trend. Whether variation in biomass production is best explained by phylogenetic diversity metrics or traditional measures of species richness also remains elusive. We compiled estimates of community composition and biomass production for tree species in 111 permanent quadrats spanning three natural forests (tropical, subtropical, and temperate) in China. Based on ~10 years of data, we compared temperature, rainfall, species pool size, and community composition in each forest each year. We estimated species richness and phylogenetic diversity in each quadrat each year; the latter metric was based on the sum of branch lengths of a phylogeny that connects species in each quadrat each year. Using generalized linear mixed‐effect models, we found that top‐ranked models included the interaction between forest and biodiversity and the interaction between forest and year for both biodiversity metrics. Variation in biomass production was best explained by phylogenetic diversity; biomass production generally increased with phylogenetic diversity, and the relationship was stronger in subtropical and temperate forests. Increasing species pool size, temperature, and rainfall and decreasing inter‐quadrat dissimilarity range shifted the relationship between biomass production and phylogenetic diversity from positive to neutral. When considered alone, species pool size had the strongest influence on biomass production, while species pool size, rainfall, and their interaction with phylogenetic diversity constituted the top‐ranked model. Our study highlights the importance of species pool size and rainfall on the relationship between phylogenetic diversity and biomass production in natural forest ecosystems.  相似文献   

8.
Lianas are a quintessential feature of tropical forests and are often perceived as being poorly studied. However, liana removal studies may be one of the most common experimental manipulations in tropical forest ecology. In this review, we synthesize data from 64 tropical liana removal experiments conducted over the past 90 yr. We explore the direction and magnitude of the effects of lianas on tree establishment, growth, survival, reproduction, biomass accretion, and plant and animal diversity in ecological and forestry studies. We discuss the geographical biases of liana removal studies and compare the various methods used to manipulate lianas. Overall, we found that lianas have a clear negative effect on trees, and trees benefitted from removing lianas in nearly every study across all forest types. Liana cutting significantly increased light and water availability, and trees responded with vastly greater reproduction, growth, survival, and biomass accumulation compared to controls where lianas were present. Removing lianas during logging significantly reduced damage of future merchantable trees and improved timber production. Our review demonstrates that lianas have an unequivocally detrimental effect on every metric of tree performance measured, regardless of forest type, forest age, or geographic location. However, lianas also appear to have a positive contribution to overall forest plant diversity and to different animal groups. Therefore, managing lianas reduces logging damage and improves timber production; however, the removal lianas may also have a negative effect on the faunal community, which could ultimately harm the plant community.  相似文献   

9.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

10.
A better understanding of seed movement in plant community dynamics is needed, especially in light of disturbance‐driven changes and investments into restoring degraded plant communities. A primary agent of change within the sagebrush‐steppe is wildfire and invasion by non‐native forbs and grasses, primarily cheatgrass (Bromus tectorum). Our objectives were to quantify seed removal and evaluate ecological factors influencing seed removal within degraded sagebrush‐steppe by granivorous Owyhee harvester ants (Pogonomyrmex salinus Olsen). In 2014, we sampled 76 harvester ant nests across 11 plots spanning a gradient of cheatgrass invasion (40%–91% cover) in southwestern Idaho, United States. We presented seeds from four plant species commonly used in postfire restoration at 1.5 and 3.0 m from each nest to quantify seed removal. We evaluated seed selection for presented species, monthly removal, and whether biotic and abiotic factors (e.g., distance to nearest nest, temperature) influenced seed removal. Our top model indicated seed removal was positively correlated with nest height, an indicator of colony size. Distance to seeds and cheatgrass canopy cover reduced seed removal, likely due to increased search and handling time. Harvester ants were selective, removing Indian ricegrass (Achnatherum hymenoides) more than any other species presented. We suspect this was due to ease of seed handling and low weight variability. Nest density influenced monthly seed removal, as we estimated monthly removal of 1,890 seeds for 0.25 ha plots with 1 nest and 29,850 seeds for plots with 15 nests. Applying monthly seed removal to historical restoration treatments across the western United States showed harvester ants can greatly reduce seed availability at degraded sagebrush sites; for instance, fourwing saltbush (Atriplex canescens) seeds could be removed in <2 months. Collectively, these results shed light on seed removal by harvester ants and emphasize their potential influence on postfire restoration within invaded sagebrush communities.  相似文献   

11.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

12.
The importance of terrestrial coastal ecosystems for maintaining healthy coral reef ecosystems remains understudied. Sea kraits are amphibious snakes that require healthy coral reefs for foraging, but little is known about their requirements of terrestrial habitats, where they slough their skin, digest prey, and breed. Using concurrent microclimate measurements and behavior surveys, we show that a small, topographically flat atoll in Fiji with coastal forest provides many microhabitats that relate to the behaviors of Yellow Lipped Sea Kraits, Laticauda colubrina. Microclimates were significantly related to canopy cover, leaf litter depth, and distance from the high‐water mark (HWM). Sea kraits were almost exclusively observed in coastal forest within 30 m of the HWM. Sloughing of skins only occurred within crevices of mature or dying trees. Resting L. colubrina were significantly more likely to occur at locations with higher mean diurnal temperatures, lower leaf litter depths, and shorter distances from the HWM. On Leleuvia, behavior of L. colubrina therefore relates to environmental heterogeneity created by old‐growth coastal forests, particularly canopy cover and crevices in mature and dead tree trunks. The importance of healthy coastal habitats, both terrestrial and marine, for L. colubrina suggests it could be a good flagship species for advocating integrated land‐sea management. Furthermore, our study highlights the importance of coastal forests and topographically flat atolls for biodiversity conservation. Effective conservation management of amphibious species that utilize land‐ and seascapes is therefore likely to require a holistic approach that incorporates connectivity among ecosystems and environmental heterogeneity at all relevant scales.  相似文献   

13.
Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species.  相似文献   

14.
Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns in Odontotermes termite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.  相似文献   

15.
Disentangling the relative influence of background versus disturbance related mortality on forest demography is crucial for understanding long‐term dynamics and predicting the influence of global change on forests. Quantifying the rates and drivers of tree demography requires direct observations of tree populations over multiple decades, yet such studies are rare in old‐growth forest, particularly in the temperate zone of Europe. We use multi‐decade (1980–2020) monitoring of permanent plots, including observations of mode of mortality and disturbance events, to quantify rates and drivers of tree demography across a network of old‐growth remnants in temperate mountain forests of Slovenia. Annual rates of mortality and recruitment varied markedly among sites and over time; census intervals that captured intermediate severity canopy disturbances caused subtle peaks in annual mortality (e.g., >2%/year), while rates of background mortality in non‐disturbed intervals averaged about 1%/year. Roughly half of the trees died from modes of mortality associated with disturbance (i.e., uprooting or snapped‐alive). Results of a Bayesian multilevel model indicate that beech (Fagus sylvatica) had a higher likelihood of disturbance related mortality compared to fir (Abies alba), which mainly died standing, and there was a notable increase in the odds of disturbance mortality with increasing diameter for all species. Annual recruitment rates were consistently low at sites (<0.5%) that lacked evidence of disturbance, but often exceeded 3% on sites with higher levels of past canopy mortality. Recruitment was dominated by beech on sites with more diffuse background mortality, while the less shade tolerant maple (Acer pseudoplatanus) recruited following known disturbance events. Our study highlights the important role of stand‐scale, partial canopy disturbance for long‐term forest demography. These results suggest that subtle climate‐driven changes in the regime of intermediate severity disturbances could have an important influence on future forest dynamics and warrant attention.  相似文献   

16.
Tree hollows are among the rarest habitats in today''s Central European managed forests but are considered key structures for high biodiversity in forests. To analyze and compare the effects of tree hollow characteristics and forest structure on diversity of saproxylic beetles in tree hollows in differently structured managed forests, we examined between 41 and 50 tree hollows in beech trees in each of three state forest management districts in Germany. During the two‐year study, we collected 283 saproxylic beetle species (5880 individuals; 22% threatened species), using emergence traps. At small spatial scales, the size of hollow entrance and the number of surrounding microhabitat structures positively influenced beetle diversity, while the stage of wood mould decomposition had a negative influence, across all three forest districts. We utilized forest inventory data to analyze the effects of forest structure in radii of 50–500 m around tree hollows on saproxylic beetle diversity in the hollows. At these larger spatial scales, the three forest management districts differed remarkably regarding the parameters that influenced saproxylic beetle diversity in tree hollows. In Ebrach, characterized by mostly deciduous trees, the amount of dead wood positively influenced beetle diversity. In the mostly coniferous Fichtelberg forest district, with highly isolated tree hollows, in contrast, only the proportion of beech trees around the focal tree hollows showed a positive influence on beetle diversity. In Kelheim, characterized by mixed forest stands, there were no significant relationships between forest structure and beetle diversity in tree hollows. In this study, the same local tree hollow parameters influenced saproxylic beetle diversity in all three study regions, while parameters of forest structure at larger spatial scales differed in their importance, depending on tree‐species composition.  相似文献   

17.
AimAs habitat loss continues to accelerate with global human population growth, identifying landscape characteristics that influence species occurrence is a key conservation priority in order to prevent global biodiversity loss. In South Africa, the arboreal samango monkey (Cercopithecus albogularis sp.) is threatened due to loss and fragmentation of the indigenous forests it inhabits. The aim of this study was to determine the habitat preferences of the samango monkey at different spatial scales, and to identify key conservation areas to inform management plans for this species.LocationThis study was carried out in the western Soutpansberg Mountains, which represents the northernmost population of samango monkeys within South Africa, and the only endangered subspecies (C. aschwarzi).MethodsWe used sequentially collected GPS points from two samango monkey groups followed between 2012 and 2017 to quantify the used and available habitat for this species within the western Soutpansberg Mountains. We developed 2nd‐order (selection of ranging area), 3rd‐order (selection within range), and 4th‐order (feeding site selection) resource selection functions (RSFs) to identify important habitat features at each scale. Through scale integration, we identified three key conservation areas for samango monkeys across Limpopo Province, South Africa.ResultsHabitat productivity was the most important landscape variable predicting probability of use at each order of selection, indicating the dependence of these arboreal primates on tall‐canopy indigenous forests. Critical habitat across Limpopo was highly fragmented, meaning complete isolation between subpopulations is likely.Main conclusionsUnderstanding the habitat characteristics that influence samango monkey distribution across South Africa is crucial for prioritizing critical habitat for this species. Our results indicated that large, contiguous patches of tall‐canopy indigenous forest are fundamental to samango monkey persistence. As such, protected area expansion of large forest patches and creation of forest corridors are identified as key conservation interventions for this species.  相似文献   

18.
Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.  相似文献   

19.
Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high‐resolution multispectral imagery, collected by a lightweight and low‐cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand‐scale from leaf‐scale chemistry measurements across a gradient of mixed‐species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50–1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross‐validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia.  相似文献   

20.
We show that aerial tips are self‐similar fractals of whole shrubs and present a field method that applies this fact to improves accuracy and precision of biomass estimates of tall‐shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power function allometry of biomass to stem diameter generates a disproportionate prediction error that increases rapidly with diameter. Thus, biomass should be modeled as a single measure of stem diameter only if stem diameter is less than a threshold Dmax. When stem diameter exceeds Dmax, then the stem internode should be treated as a conic frustrum requiring two additional measures: a second, node‐adjacent diameter and a length. If the second diameter is less than Dmax, then the power function allometry can be applied to the aerial tip; otherwise an additional internode is measured. This “two‐component” allometry—internodes as frustra and aerial tips as shrubs—can reduce estimated biomass error propagated to the plot‐level by as much as 50% or more where very large shrubs are present Dmax is any diameter such that the ratio of single‐component to two‐component uncertainty exceeds the ratio of two‐component to single‐component measurement time. Guidelines for estimating Dmax based on pilot field data are provided. Tall shrubs are increasing in abundance and distribution across Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for both ecological studies and carbon accounting. Reducing field‐sample prediction error increases precision in multi‐stage modeling because additional measures efficiently improve plot‐level biomass precision, reducing uncertainty for shrub biomass estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号