首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Live-imaging is an essential tool to visualize live cells and monitor their behaviors during development. This technology demands a variety of mouse reporter lines, each uniquely expressing a fluorescent protein. Here, we developed an R26R-RG reporter mouse line that conditionally and simultaneously expresses mCherry and EGFP in nuclei and plasma membranes, respectively, from the Rosa26 locus. The intensity and resolution of mCherry nuclear localization and EGFP membrane localization were demonstrated to be sufficient for live-imaging with embryos that express RG (mCherry and EGFP) ubiquitously and specifically in fetal Sertoli cells. The conditional R26R-RG reporter mouse line should be a useful tool for labeling nuclei and membranes simultaneously in distinct cell populations.  相似文献   

2.
3.
Digital image analysis of cell nuclei is useful to obtain quantitative information for the diagnosis and prognosis of cancer. However, the lack of a reliable automatic nuclear segmentation is a limiting factor for high-throughput nuclear image analysis. We have developed a method for automatic segmentation of nuclei in Feulgen-stained histological sections of prostate cancer. A local adaptive thresholding with an object perimeter gradient verification step detected the nuclei and was combined with an active contour model that featured an optimized initialization and worked within a restricted region to improve convergence of the segmentation of each nucleus. The method was tested on 30 randomly selected image frames from three cases, comparing the results from the automatic algorithm to a manual delineation of 924 nuclei. The automatic method segmented a few more nuclei compared to the manual method, and about 73% of the manually segmented nuclei were also segmented by the automatic method. For each nucleus segmented both manually and automatically, the accuracy (i.e., agreement with manual delineation) was estimated. The mean segmentation sensitivity/specificity were 95%/96%. The results from the automatic method were not significantly different from the ground truth provided by manual segmentation. This opens the possibility for large-scale nuclear analysis based on automatic segmentation of nuclei in Feulgen-stained histological sections.  相似文献   

4.
The segmentation accuracy of four fast and simple gray-scale threshold selection methods were compared using a data base of stained cervical cell images. Some postprocessing was applied to the segmented images to increase the accuracy of the nuclear segmentation. The most accurate method correctly segmented the cytoplasm of 81% of the cell images and the nuclei of 78% of the cell images in the data base.  相似文献   

5.
Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 µm). The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick) samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm−1 used in conjunction with a 4×0.1 NA objective ( = 0.165). This yielded an optical section thickness of 128 µm and an 8.9×contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues performed equivalently in regards to nuclear density quantification, to physical frozen sectioning and standard microscopy.  相似文献   

6.
l ‐glutathione capped highly fluorescent CdTe quantum dots (QDs) were prepared by an aqueous approach and used as fluorescent labels to link albumin bovine serum (BSA) and rat anti‐mouse CD4, which was expressed on mouse T‐lymphocyte and mouse spleen tissue. The sharp and narrow emission peaks showed that the as‐prepared QDs have desirable dispersibility, uniformity and good fluorescence properties. Both CdTe–BSA and CdTe–CD4 conjugates showed an enhancement of fluorescence intensity over that of bare CdTe QDs. The experimental result of gel electrophoresis confirmed the successful conjugation of CdTe–BSA and CdTe–CD4. The fluorescent microscopic images of CdTe–CD4 labeled mouse T‐lymphocyte cells and mouse spleen tissue were compared with that obtained from fluorescein isothiocyanate labeling. It was demonstrated that the CdTe QDs‐based probe exhibited much better photostability and fluorescence intensity than fluorescein isothiocyanate, showing a good application potential in the immuno‐labeling of cells and tissues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
An automated procedure that refines the nuclear contour of a previously segmented nucleus is described. The algorithm makes use of intensity information, edge magnitude information and both object and edge connectivity information. This automated procedure generates a closed contour precisely along the edge of the nucleus. The procedure was tested on a database of 3,680 red-green-blue images of thionin-SO2 and orange II-stained cervical cells obtained from normal and dysplastic samples. When used in conjunction with a simple threshold selection algorithm and an artifact removal routine, this edge relocation algorithm resulted in the correct segmentation of over 98% of the nuclei. Only 63 (1.7%) of all nuclei were incorrectly segmented.  相似文献   

8.
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.  相似文献   

9.
Red cells from Plasmodium berghei infected mouse blood can be sorted on the basis of their DNA content with the bisbenzimidazole dye 33258 Hoechst. The optimal conditions for dye uptake have been established and with these conditions uninfected cells are nonfluorescent and can be completely separated from infected cells which exhibit fluorescence in almost direct proportion to the number of parasite nuclei (i.e. DNA) they contain. The number of fluorescent cells detected and their fluorescence intensity is shown to be dependent on the dye concentration and the incubation medium being used. At least a proportion of the infected cells sorted from each fluorescence peak in the cell distribution retain their infectivity in vivo with some, but not all, conditions of labeling. This technique is being used to separate minor cell populations from infected blood for biochemical and immunochemical analyses and to screen human samples for malaria infected cells.  相似文献   

10.

Purpose

To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.

Materials and Methods

Tissue excised from a genetically engineered mouse model of sarcoma was imaged using a subcellular resolution microendoscope after topical application of a fluorescent anatomical contrast agent: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.

Results

Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.

Conclusion

The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.  相似文献   

11.
In order to interpret the Feulgen-dependent chromatin morphology on a functional basis, we performed model experiments in which labeling with 14C-thymidine and 14C-uridine was used as a functional parameter. Using a relocation facility, information on either DNA or RNA, labeling intensity of a cell was added to the parameters of image analysis by measuring the same cell by scanning photometry after Feulgen staining. The Feulgen-stained nuclei were interactively sampled and automatically segmented. Most of the textural information was gained from a flat texture image obtained by subtracting the original image from a median-filtered image. In addition to the autoradiographic features, visually recognizable differences in nuclear morphology, such as the number of nucleoli and the level of condensed (inactive) and diffuse (active) regions of the chromatin, were also correlated with textural parameters. Using the supervised cluster analysis method, an attempt was made to establish a correlation between visual nuclear morphology and autoradiographic labeling intensity that improved the functional understanding of the Feulgen features. Our results further clarify the supramolecular chromatin structure and its dynamics during specific transitions in the cell cycle, namely the G0-G1, G1-S and S-G2 transitions; this information may become useful in diagnostic procedures.  相似文献   

12.
OBJECTIVE: To develop an automated, reproducible epithelial cell nuclear segmentation method to quantify cytologic features quickly and accurately from breast biopsy. STUDY DESIGN: The method, based on fuzzy c-mean clustering of the hue-band of color images and the watershed transform, was applied to 39 images from 3 histologic types (typical hyperplasia, atypical hyperplasia, and ductal carcinoma in situ [cribriform and solid]). RESULTS: The performance of the segmentation algorithm was evaluated by visually determining the percentage of badly segmented nuclei (approximately 25% for all types), the percentage of nuclei that remained in clumps (4.5-16.7%) and the percentage of missed nuclei (0.4-1.5%) for each image. CONCLUSION: The segmentation algorithm was sensitive in that a small percentage of nuclei were missed. However, the percentage of badly segmented nuclei was on the order of 25%, and the percentage of nuclei that remained in clumps was on the order of 10% of the total number of nuclei in the duct. Even so, > 600 nuclei per duct, on average, were segmented correctly; that was a sufficient number by which to calculate accurate quantitative, cytologic, morphometric measurements of epithelial cell nuclei in stained tissue sections of breast biopsy.  相似文献   

13.
Cultured mouse lymphoma cells incorporated [3H]leucine and [32P]phosphate into nuclear stress proteins within 3 h after exposure to either elevated temperature (45 degrees C) or sodium arsenite. Radiolabeled proteins were detected by autoradiography after two-dimensional polyacrylamide gel electrophoresis. To determine the cell cycle stage specificity of labeling, nuclei were isolated and sorted into two cell cycle phases using a fluorescent activated cell sorter. After either heat shock or sodium arsenite treatment, the majority of [3H]leucine incorporation into stress proteins occurred during the G0 + G1 phase with minimal labeling in the G2 phase. On the other hand, 32P labeling of stress proteins occurred in both the G0 + G1 and G2 phases after exposure to sodium arsenite, while incorporation of 32P was limited after heat stress. Following sodium arsenite treatment, a distinct set of four stress proteins (80-84 kDa) was detected with [3H]leucine only in G0 + G1 phase, but with [32P]phosphate these stress proteins were labeled in both G0 + G1 and G2. There was differential [32P]phosphate labeling between proteins of the 80-84 kDa set during cell cycling. Individual proteins of this set were isolated from gel plugs after sodium arsenite or heat-shock treatment. Coelectrophoresis of proteins from the two treatment groups showed that they had similar electrophoretic mobilities. All four proteins of the 80-84 kDa set (sodium arsenite induced) possessed similar polypeptide maps after digestion with V8 protease. Cytofluorometric analysis demonstrated a reduction in the number of nuclei in both S and G2 phases of the cell cycle two h after heat shock, but not following sodium arsenite treatment. However, there was a significant depression in the number of nuclei in S and G2 4 h after exposure to sodium arsenite and very modest labeling with 32P of stress proteins was observed at this time.  相似文献   

14.
Human and mouse nuclei can be distinguished by differences in the constitutive heterochromatin when stained with quinacrine dihydrochloride. With the staining method described, mouse heterochromatin during inter phase appears as brilliant fluorescent chromo-centers. By replacing the commonly used aqueous buffer mounting medium with a xylene-diluted synthetic resin, the haziness of the nuclear fluorescence is eliminated thus allowing identification of the heterochromatin pattern in histological preparations. A requirement for the definite identification of cells of human or murine origin in the nude mouse is the knowledge that the heterochromatin arrangement changes according to the stage of differentiation of the cell or the position of a particular nucleus within the cell cycle.  相似文献   

15.
Nuclear protein and DNA content of HeLa cells was determined as a function of time following hyperthermia by staining isolated nuclei with two fluorescent dyes: fluorescein isothiocyanate (FITC) for protein content and propidium iodide (PI) for DNA content. Bivariate FITC and PI histograms were obtained by flow cytometry. Univariate flow cytometric analysis was shown to be inadequate for this study, because some of the nuclear protein changes were due to cell cycle redistribution. Posthyperthermia cell kinetics could be divided into two distinct phases: an early phase characterized by the removal of heat-induced excess nuclear proteins with little or no cell progression through the cell cycle; and a late phase characterized by a redistribution of cells in the cell cycle resulting in an accumulation of cells in G2. The duration of these phases was dependent upon the hyperthermia dose. In the early phase, the rate of removal of excess nuclear protein was found to vary with heating time and temperature for time-temperature combinations which resulted in the same amount of excess nuclear protein. In the late phase, the cells blocked in G2 did not reduce their nuclear protein levels back to control values.  相似文献   

16.
The rapid development of transparent zebrafish embryos (Danio rerio) in combination with fluorescent labelings of cells and tissues allows visualizing developmental processes as they happen in the living animal. Cells of interest can be labeled by using a tissue specific promoter to drive the expression of a fluorescent protein (FP) for the generation of transgenic lines. Using fluorescent photoconvertible proteins for this purpose additionally allows to precisely follow defined structures within the expression domain. Illuminating the protein in the region of interest, changes its emission spectrum and highlights a particular cell or cell cluster leaving other transgenic cells in their original color. A major limitation is the lack of known promoters for a large number of tissues in the zebrafish. Conversely, gene- and enhancer trap screens have generated enormous transgenic resources discretely labeling literally all embryonic structures mostly with GFP or to a lesser extend red or yellow FPs. An approach to follow defined structures in such transgenic backgrounds would be to additionally introduce a ubiquitous photoconvertible protein, which could be converted in the cell(s) of interest. However, the photoconvertible proteins available involve a green and/or less frequently a red emission state1 and can therefore often not be used to track cells in the FP-background of existing transgenic lines. To circumvent this problem, we have established the PSmOrange system for the zebrafish2,3. Simple microinjection of synthetic mRNA encoding a nuclear form of this protein labels all cell nuclei with orange/red fluorescence. Upon targeted photoconversion of the protein, it switches its emission spectrum to far red. The quantum efficiency and stability of the protein makes PSmOrange a superb cell-tracking tool for zebrafish and possibly other teleost species.  相似文献   

17.
Nuclei from various mouse tissues exhibit a pattern of fluorescence characteristic of the cell type when stained with the fluorescent compound Hoechst 33258. When such preparations are hybridized in situ with 3H-RNA complementary to the A-T rich satellite of mouse, it is clearly seen that only the fluorescent regions of the nuclei contain the satellite DNA. Thus Hoechst 33258 allows the precise localization of satellite DNA at all stages of the mouse cell cycle.  相似文献   

18.
In order to identify and characterize structural components in the nuclear membrane of Saccharomyces cerevisiae which show a cell-cycle dependent regulation, we have undertaken a combined biochemical/immunofluorescence microscopy approach. Antisera raised against nuclear membrane proteins from yeast lead to the identification of a 40 kDa membrane protein which cofractionated with nuclei upon cell fractionation. This 40 kDa membrane protein partitioned into the Triton X-114 phase and was not extracted from purified nuclei at alkaline pH. Using affinity-purified antibodies against this protein, the antigen was localized at the nuclear periphery suggesting that it is an integral constituent of the nuclear envelope. However, the 40 kDa antigen revealed a heterogenous distribution within the nuclear membrane: in indirect immunofluorescence microscopy, nuclei isolated from an asynchronously growing yeast culture showed either no immunodetectable antigen or contained it in a cap-, dot- or ring-like conformation. Using synchronized yeast cultures, we could demonstrate cell-cycle dependent changes of concentration and localization of the 40 kDa protein within the nuclear envelope.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号