首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1) is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val66-Pro85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.  相似文献   

2.
A potent natural antimicrobial peptide named temporin-PE was identified and encoded from the skin secretions of Pelophylax kl. esculentus via “shotgun” cloning and LC-MS/MS fragmentation analysis. Target-modifications were carried out to further enhance the antimicrobial and anti-proliferative bioactivities, whilst decreasing the hemolytic effect. A range of bioassays demonstrated that replacing a proline with a tyrosine residue resulted in a loss of the bioactivity against Gram-negative bacteria, but dramatically improved the hemolytic and anti-proliferative activity, indicating the FLP- motif influences the hemolytic activity of temporins. Moreover, the coupling of TAT to the peptide dramatically improved its antimicrobial activity, indicating coupling TAT to these peptides could be considered as a potential tool to improve their antimicrobial activity. Overall, we have shown that targeted modifications of this natural antimicrobial peptide can adjust its bioactivities to help its development as an antibiotic or anti-proliferative agent.  相似文献   

3.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

4.
5.
Chemerin is a protein ligand for the G protein-coupled receptor CMKLR1 and also binds to two atypical heptahelical receptors, CCRL2 and GPR1. Chemerin is a leukocyte attractant, adipokine, and antimicrobial protein. Although chemerin was initially identified as a highly expressed gene in healthy skin keratinocytes that was downregulated during psoriasis, the regulation of chemerin and its receptors in the skin by specific cytokines and microbial factors remains unexplored. Here we show that chemerin, CMKLR1, CCRL2 and GPR1 are expressed in human and mouse epidermis, suggesting that this tissue may be both a source and target for chemerin mediated effects. In human skin cultures, chemerin is significantly downregulated by IL-17 and IL-22, key cytokines implicated in psoriasis, whereas it is upregulated by acute phase cytokines oncostatin M and IL-1β. Moreover, we show that human keratinocytes in vitro and mouse skin in vivo respond to specific microbial signals to regulate expression levels of chemerin and its receptors. Furthermore, in a cutaneous infection model, chemerin is required for maximal bactericidal effects in vivo. Together, our findings reveal previously uncharacterized regulators of chemerin expression in skin and identify a physiologic role for chemerin in skin barrier defense against microbial pathogens.  相似文献   

6.
Five novel antimicrobial peptides (temporin-LK1, rugosin-LK1, rugosin-LK2, gaegurin-LK1, and gaegurin-LK2) are purified and characterized from Kuhl’s wart frog skin secretions, Limnonectes kuhlii. They share obvious similarity to temporin, rugosin, and gaegurin antimicrobial peptide family, respectively. Their amino acid sequences were determined by Edman degradation and mass spectrometry, and further confirmed by cDNA cloning. Nine cDNA sequences encoding precursors of these five purified antimicrobial peptides and other four hypothetical antimicrobial peptides were cloned from the skin cDNA library of L. kuhlii. The deduced precursors are composed of a predicted signal peptide, an acidic spacer peptide, and a mature antimicrobial peptide. Most of them showed strong antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi. The current work identified and characterized three families of antimicrobial peptides from L. kuhlii skins and confirmed that the genus of Limnonectes amphibians share similar antimicrobial peptide families with the genus of Rana amphibians. In addition, a unique antimicrobial peptide (temporin-LK1) with 17 residues including four phenylalanines, which is significantly different from other temporins (16 residues, one or two phenylalanines), was identified in this work. Such unique structure might provide novel template or leading structure to design antimicrobial agents.  相似文献   

7.
Antimicrobial peptide diversity has been found in some amphibians. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms encountered by amphibians. Peptidomics and genomics analyses were used to study antimicrobial peptide diversity in the skin secretions of the torrent frog, Amolops jingdongensis. Thirty-one antimicrobial peptides belonging to nine groups were identified in the skin secretions of this frog. Among them, there are two novel antimicrobial groups (jingdongin-1 and -2) with unique structural motifs. The other seven groups belong to known antimicrobial peptide families, namely brevinin-1, brevinin-2, odorranain-F, esculentin-2, temporin, amolopin-3, and ranacyclin. Combined with previous reports, more than 13 antimicrobial peptide groups have been identified from the genus Amolops. Most of these antimicrobial peptide groups are also found in amphibians belonging to the genus Rana or Odorrana which suggests a possible evolutionary connection among Amolops, Rana, and Odorrana. Two novel antimicrobial groups (jingdongin-1 and -2) were synthesized and their antimicrobial activities were assayed. Some of them showed strong antimicrobial abilities against microorganisms including Gram-negative and -positive bacteria, and fungi. The extreme diversity of antimicrobial peptides in the Amolops amphibians was demonstrated. In addition, several novel peptide templates were provided for antimicrobial agent design.  相似文献   

8.
The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus.  相似文献   

9.
Long time geographical isolation of Hainan Island from the China continent has resulted in appearance of many novel frog species. As one of them, Hainan odorous frog, Odorrana hainanensis possesses some special antimicrobial peptides distinct from those found in other Odorrana. In this study, three antimicrobial peptides have been purified and characterized from the skin secretion of O. hainanensis. With the similarity to the temporin family, two peptides are characterized by amidated C-terminals, so they are named as temporin-HN1 (AILTTLANWARKFL-NH2) and temporin-HN2 (NILNTIINLAKKIL-NH2). The third antimicrobial peptide belongs to the brevinin-1 family which is widely distributed in Eurasian ranids, and thus, it is named as brevinin-1HN1 (FLPLIASLAANFVPKIFCKITKKC). Furthermore, after sequencing 68 clones, eight cDNAs encoding antimicrobial peptide precursors were cloned from the skin-derived cDNA library of O. hainanensis. These eight cDNAs can encode seven mature antimicrobial peptides including the above three, as well as brevinin-1V, brevinin-2HS2, odorranain-A6, and odorranain-B1. Twelve different species of microorganisms were chosen, including Gram-positive, Gram-negative and fungi, to test the antimicrobial activities of temporin-HN1, temporin-HN2, brevinin-1HN1, brevinin-1V, and brevinin-2HS2. The result shows that, in addition to their activities against Gram-positive bacteria, temporin-HN1 and temporin-HN2 also possess activities against some Gram-negative bacteria and fungi. However, the two antimicrobial peptides, brevinin-1HN1 and brevinin-1V of the brevinin-1 family have stronger antimicrobial activities than temporin-HN1 and temporin-HN2 of the temporin family. Brevinin-1HN1 possesses activity against Staphylococcus aureus (ATCC25923), Rhodococcus rhodochrous X15, and Slime mould 090223 at the concentration of 1.2 μM.  相似文献   

10.
Intensive studies have demonstrated that there are many antimicrobial peptides in amphibian skins. Three novel antimicrobial peptides were identified from the skin of the frog, Rana shuchinae. They are named shuchins 3–5. Their sequences were determined as KAYSMPRCKGGFRAVMCWL-NH2, KAYSTPRCKGLFRALMCWL-NH2, and KAYSMPRCKYLFRAVLCWL-NH2 by Edman degradation and mass spectrometry analysis, respectively. They are composed of 19 amino acids (aa) with unique sequences. BLAST search indicated that they showed no similarity to any known peptides or proteins. They are a novel family of antimicrobial peptide. These peptides showed antimicrobial activities against all of tested microorganisms including Gram-positive bacteria, Gram-negative bacteria and fungi. The cDNAs encoding precursors of these peptides were cloned from the skin cDNA library of R. shuchinae. The precursors are composed of 64 amino acid residues including predicted signal peptides, acidic spacer peptides, and mature antimicrobial peptides. The current work identified a novel antimicrobial peptide family.  相似文献   

11.
We recently reported the primary structures, antimicrobial activities and cDNA precursors of nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorranaishikawae. Their cDNA clones revealed a highly conserved approximately 60 bp region upstream of the start codon. This conserved region was used in the “shotgun” cDNA cloning method to reveal additional cDNAs encoding novel antimicrobial peptides of O.ishikawae. After sequencing 344 clones, we identified novel 13 cDNAs encoding dermal peptides in addition to the previously identified nine antimicrobial peptides. These 13 unique cDNAs encoded precursor proteins each containing a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg/Lys processing site and a dermal peptide at the C-terminus. The dermal peptides were members of the palustrin-2 (two peptides; termed palustrin-2ISc and palustrin-2ISd), nigrocin-2 (one peptide; nigrocin-2ISc), brevinin-1 (one peptide; brevinin-1ISa), odorranain-M (one peptide; odorranain-MISa) and entirely novel peptides (eight peptides; ishikawain-1-8). Although palustrin-2ISd and odorranain-MISa had few antimicrobial activities, palustrin-2ISc and nigrocin-2ISc possessed a broad-spectrum of growth inhibition against bacteria. Brevinin-1ISa had the most potent antimicrobial activities against the Gram-positive bacteria and the fungus but not the Gram-negative bacterium, Escherichiacoli. However, eight novel peptides showed no growth inhibition against these microorganisms.  相似文献   

12.
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC = 0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.  相似文献   

13.
Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung’s host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (μM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50 = 50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.  相似文献   

14.
Infections caused by Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa foremost among them, constitute a major worldwide health problem. Bioinformatics methodologies are being used to rationally design new antimicrobial peptides, a potential alternative for treating these infections. One of the algorithms used to develop antimicrobial peptides is the Joker, which was used to design the peptide PaDBS1R6. This study evaluates the antibacterial activities of PaDBS1R6 in vitro and in vivo, characterizes the peptide interaction to target membranes, and investigates the PaDBS1R6 structure in contact with mimetic vesicles. Moreover, we demonstrate that PaDBS1R6 exhibits selective antimicrobial activity against Gram-negative bacteria. In the presence of negatively charged and zwitterionic lipids the structural arrangement of PaDBS1R6 transits from random coil to α-helix, as characterized by circular dichroism. The tertiary structure of PaDBS1R6 was determined by NMR in zwitterionic dodecylphosphocholine (DPC) micelles. In conclusion, PaDBS1R6 is a candidate for the treatment of nosocomial infections caused by Gram-negative bacteria, as template for producing other antimicrobial agents.  相似文献   

15.
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events.  相似文献   

16.
Antimicrobial peptides are important defense compounds of higher organisms that can be used as therapeutic agents against bacterial and/or viral infections. We designed several antimicrobial peptides containing hydrophobic and positively charged clusters that are active against plant and human pathogens. Especially peptide SP1-1 is highly active with a MIC value of 0.1 μg/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseudomonas syringae pv syringae. However, for commercial applications high amounts of peptide are necessary. The synthetic production of peptides is still quite expensive and, depending on the physico-chemical features, difficult. Therefore we developed a plant/tobacco mosaic virus-based production system following the ‘full virus vector strategy’ with the viral coat protein as fusion partner for the designed antimicrobial peptide. Infection of Nicotiana benthamiana plants with such recombinant virus resulted in production of huge amounts of virus particles presenting the peptides all over their surface. After extraction of recombinant virions, peptides were released from the coat protein by chemical cleavage. A protocol for purification of the antimicrobial peptides using high resolution chromatographic methods has been established. Finally, we yielded up to 0.025 mg of peptide per g of infected leaf biomass. Mass spectrometric and NMR analysis revealed that the in planta produced peptide differs from the synthetic version only in missing of N-terminal amidation. But its antimicrobial activity was in the range of the synthetic one. Taken together, we developed a protocol for plant-based production and purification of biologically active, hydrophobic and positively charged antimicrobial peptide.  相似文献   

17.
The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained activity under host physiological conditions of NaCl, MgCl2 and pH. However, when exposed to serum, LP5 lost activity. Furthermore, when increasing NaCl concentration and lowering pH, the peptide showed reduces activity. When investigating the tolerance mechanisms of S. aureus toward antimicrobial peptides, we found that LP5 was protease resistant. However, the dltA and vraF genes, involved in reducing the net anionic charge of the bacterial cell envelope and sensing of antimicrobial peptides, respectively, played a role in the tolerance of S. aureus against LP5. In addition, the exposure of S. aureus to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti-virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S. aureus, which is crucial information for designing new peptides for optimizing antimicrobial therapy.  相似文献   

18.
Antimicrobial peptides constitute an indispensable component of innate immune system in organisms ranging from bacteria to man. Despite this, peptides lag far behind the conventional antibiotics in treating infections. The menace of multidrug-resistant bacteria, however, has revived the antimicrobial peptide research. We reasoned that the membrane-binding regions of bacterial proteins could be purposed to combat them. Here, we identify potent antimicrobial peptides from the C-terminal amphipathic helix of E. coli FtsA protein. The 11 and 13-residue peptides exhibited activity against E. coli, gentamicin-resistant MRSA, and C. albicans. The activity is little affected by the presence of salt and divalent cations. The peptides preferentially bind to the negatively-charged membranes as indicated by tryptophan fluorescence studies. The peptides permeabilize the E. coli outer and inner membranes at very promising concentrations suggesting membrane-disruption as one of the mechanisms of killing.  相似文献   

19.
The chemerin receptor (CMKLR1) is a G protein-coupled receptor found on select immune, epithelial, and dorsal root ganglion/spinal cord neuronal cells. CMKLR1 is primarily coupled to the inhibitory G protein, Gαi, and has been shown to modulate the resolution of inflammation and neuropathic pain. CMKLR1 is activated by both lipid and peptide agonists, resolvin E1 and chemerin, respectively. Notably, these ligands have short half-lives. To expedite the development of long acting, stable chemerin analogs as candidate therapeutics, we used membrane-tethered ligand technology. Membrane-tethered ligands are recombinant proteins comprised of an extracellular peptide ligand, a linker sequence, and an anchoring transmembrane domain. Using this technology, we established that a 9-amino acid-tethered chemerin fragment (amino acids 149–157) activates both mouse and human CMKLR1 with efficacy exceeding that of the full-length peptide (amino acids 21–157). To enable in vivo delivery of a corresponding soluble membrane anchored ligand, we generated lipidated analogs of the 9-amino acid fragment. Pharmacological assessment revealed high potency and wash resistance (an index of membrane anchoring). When tested in vivo, a chemerin SMAL decreased allergic airway inflammation and attenuated neuropathic pain in mice. This compound provides a prototype membrane-anchored peptide for the treatment of inflammatory disease. A parallel approach may be applied to developing therapeutics targeting other peptide hormone G protein-coupled receptors.  相似文献   

20.
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σE envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号