首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant pathogens pose a significant threat to the food industry and food security accounting for 10–40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic‐acquired resistance, basal resistance, hypersensitivity and the gene‐for‐gene concept in this context.  相似文献   

2.
石添添  高英  王欢  刘君 《植物学报》2021,56(4):480-487
植物病害严重威胁全球粮食生产,研究植物对病原菌防御机制和病原菌对寄主作物的侵染过程和分子机制,有助于改良植物种源使其获得持久抗性。近年来, 日渐增多的研究表明, 一些抗病蛋白需要转移到细胞核内才能启动免疫反应,进而发挥抗病防御作用,而细胞核质转运受体是实现这些抗病蛋白核质转运必不可少的“载体”。因此,细胞核质转运及转运...  相似文献   

3.
本文简要介绍植物与病原菌在细胞壁层面上的相互作用,并从植物细胞对受侵过程中细胞壁损伤的感知、细胞壁损伤引起植物抗病信号途径的活化、植物细胞壁防卫反应的分子机制等方面重点概述植物细胞壁抗性及其分子机制。  相似文献   

4.
The tea plant (Camellia sinensis) is susceptible to anthracnose disease that causes considerable crop loss and affects the yield and quality of tea. Multiple Colletotrichum spp. are the causative agents of this disease, which spreads quickly in warm and humid climates. During plant–pathogen interactions, resistant cultivars defend themselves against the hemibiotrophic pathogen by activating defence signalling pathways, whereas the pathogen suppresses plant defences in susceptible varieties. Various fungicides have been used to control this disease on susceptible plants, but these fungicide residues are dangerous to human health and cause fungicide resistance in pathogens. The problem-solving approaches to date are the development of resistant cultivars and ecofriendly biocontrol strategies to achieve sustainable tea cultivation and production. Understanding the infection stages of Colletotrichum, tea plant resistance mechanisms, and induced plant defence against Colletotrichum is essential to support sustainable disease management practices in the field. This review therefore summarizes the current knowledge of the identified causative agent of tea plant anthracnose, the infection strategies and pathogenicity of C. gloeosporioides, anthracnose disease resistance mechanisms, and the caffeine-induced defence response against Colletotrichum infection. The information reported in this review will advance our understanding of host–pathogen interactions and eventually help us to develop new disease control strategies.  相似文献   

5.
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Comprehensive biochemical and genetic approaches are now starting to reveal the complex signaling pathways that mediate plant disease resistance. Initiation of defense signaling often involves specific recognition of invading pathogens by the products of specialized host resistance (R) genes. Potential resistance signaling components have been identified by mutational analyses to be required for specific resistance in the model Arabidopsis and some crop species. Strikingly, many of the components share similarity to that of innate immune systems in animals. Evidence is also accumulating that plant pathogens have a number of ways to evade host defenses during the early stages of infection, similar to animal pathogens. These strategies are becoming much better understood in a number of plant–pathogen interactions. In this review, we focus on the current knowledge of host factors that control plant resistance and susceptibility to fungal pathogens. The knowledge accumulated in these studies will serve a fundamental basis for combating diseases in strategic molecular agriculture.  相似文献   

6.
Host resistance and synthetic antimicrobials such as fungicides are two of the main approaches used to control plant diseases in conventional agriculture. Although pathogens often evolve to overcome host resistance and antimicrobials, the majority of reports have involved qualitative host – pathogen interactions or antimicrobials targeting a single pathogen protein or metabolic pathway. Studies that consider jointly the evolution of virulence, defined as the degree of damage caused to a host by parasite infection, and antimicrobial resistance are rare. Here we compared virulence and fungicide tolerance in the fungal pathogen Mycosphaerella graminicola sampled from wheat fields across three continents and found a positive correlation between virulence and tolerance to a triazole fungicide. We also found that quantitative host resistance selected for higher pathogen virulence. The possible mechanisms responsible for these observations and their consequences for sustainable disease management are discussed.  相似文献   

7.
Many plant pathogens gain entry to their host via stomata. On sensing attack, plants close these pores to restrict pathogen entry. Here, we show that plants exhibit a second longer term stomatal response to pathogens. Following infection, the subsequent development of leaves is altered via a systemic signal. This reduces the density of stomata formed, thus providing fewer entry points for pathogens on new leaves. Arabidopsis thaliana leaves produced after infection by a bacterial pathogen that infects through the stomata (Pseudomonas syringae) developed larger epidermal pavement cells and stomata and consequently had up to 20% reductions in stomatal density. The bacterial peptide flg22 or the phytohormone salicylic acid induced similar systemic reductions in stomatal density suggesting that they might mediate this effect. In addition, flagellin receptors, salicylic acid accumulation, and the lipid transfer protein AZI1 were all required for this developmental response. Furthermore, manipulation of stomatal density affected the level of bacterial colonization, and plants with reduced stomatal density showed slower disease progression. We propose that following infection, development of new leaves is altered by a signalling pathway with some commonalities to systemic acquired resistance. This acts to reduce the potential for future infection by providing fewer stomatal openings.  相似文献   

8.
Plant diseases, caused by microbes, threaten world food, feed, and bioproduct security. Plant resistance has not been effectively deployed to improve resistance in plants for lack of understanding of biochemical mechanisms and genetic bedrock of resistance. With the advent of genome sequencing, the forward and reverse genetic approaches have enabled deciphering the riddle of resistance. Invading pathogens produce elicitors and effectors that are recognized by the host membrane-localized receptors, which in turn induce a cascade of downstream regulatory and resistance metabolite and protein biosynthetic genes (R) to produce resistance metabolites and proteins, which reduce pathogen advancement through their antimicrobial and cell wall enforcement properties. The resistance in plants to pathogen attack is expressed as reduced susceptibility, ranging from high susceptibility to hypersensitive response, the shades of gray. The hypersensitive response or cell death is considered as qualitative resistance, while the remainder of the reduced susceptibility is considered as quantitative resistance. The resistance is due to additive effects of several resistance metabolites and proteins, which are produced through a network of several hierarchies of plant R genes. Plants recognize the pathogen elicitors or receptors and then induce downstream genes to eventually produce resistance metabolites and proteins that suppress the pathogen advancement in plant. These resistance genes (R), against qualitative and quantitative resistance, can be identified in germplasm collections and replaced in commercial cultivars, if nonfunctional, based on genome editing to improve plant resistance.  相似文献   

9.
Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR.Key Words: Arabidopsis, benzothiadiazole, defense response potentiation, 2,6-dichloroisonicotinic acid, elicitor, MAP kinase, parsley cell culture, priming, salicylic acid, sensitization  相似文献   

10.
Parasitic plants pose a major biotic threat to plant growth and development and lead to losses in crop productivity of billions of USD annually. By comparison with “normal” autotrophic plants, parasitic plants live a heterotrophic lifestyle and rely on water, solutes and to a greater (holoparasitic plants) or lesser extent (hemiparasitic plants) on sugars from other host plants. Most hosts are unable to detect an infestation by plant parasites or unable to fend off these parasitic invaders. However, a few hosts have evolved defense strategies to avoid infestation or protect themselves actively post-attack often leading to full or partial resistance. Here, we review the current state of our understanding of the defense strategies to plant parasitism used by host plants with emphasis on the active molecular resistance mechanisms. Furthermore, we outline the perspectives and the potential of future studies that will be indispensable to develop and breed resistant crops.

Some plants are able to recognize parasitic plants as attacking pathogens and can fend them off by inducing defense responses.

Advances
  • Receptor proteins have been discovered in host plants (i.e. sunflower, tomato, or cowpea) that detect parasitic plants as an invading pathogen and further induce plant immunity and resistance responses in hosts leading to a parasite rejection.
  • Molecular patterns exist in parasitic plants that can be specifically detected by host plant receptors.
  • The host plant receptors require co-receptors and signaling components (i.e. BAK1, SOBIR1, etc.) also known from plant immunity against microbes.
  • Parasitic plants evolved strategies to circumvent and to suppress host plant immunity, i.e. by manipulating host cells with siRNAs or proteins that act as effectors.
  • Similar to the interaction of plants with microbial pathogens, elements of PTI and ETI can be both observed in plant–parasitic plant interactions.
  相似文献   

11.
Phytoalexins   总被引:4,自引:0,他引:4  
Plants respond to infection by accumulating low-molecular-weight antimicrobial stress metabolites called phytoalexins. The phytoalexins are generally lipophilic substances that are products of a plant's secondary metabolism, and they often accumulate at infection sites to concentrations which are inhibitory to the development of fungi and bacteria. Resistance and susceptibility in plants are not determined by the presence or absence of genetic information for resistance mechanisms, including biosynthetic pathways for phytoalexin synthesis, but, rather, by the speed with which the information is expressed, the activity of the gene products, and the magnitude of the resistance response. Unlike the antibody-antigen component of the immune system in animals, low specificity is the general rule for the induction of phytoalexin accumulation and their activity against microorganisms. Annual plants can be systemically immunized against diseases caused by fungi, bacteria, and viruses by restricted infection with the pathogens, avirulent forms of pathogens, or compounds formed in immunized plants. Immunization induces plants to respond rapidly to infection with a multicomponent resistant response. The biosynthesis and accumulation of phytoalexins is one component of this resistant response. Resistance may be elicited by components in the walls and cell surfaces of fungi and bacteria and by compounds liberated from cells, their walls, or surfaces. Resistance can be enhanced or suppressed by products produced by the pathogen, the host, or by their interaction. The successful pathogen avoids recognition by the plant as nonself, suppresses the resistance response, or detoxifies its products. The actors in this play for survival on the metabolic level include the shikimate, acetate-malonate, and acetate-mevalonate pathways; glucans; oligogalacturonates; glycoproteins; lipopolysaccharides; and poly-unsaturated fatty acids. The play is directed by the genetic information of host and pathogen, and this direction is at the level of recognition and not by the presence or absence of mechanisms to contain the development of infectious agents.  相似文献   

12.
* Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants, especially grapevine, tomato, soft fruits and vegetables. This disease brings about important economic losses in both pre- and postharvest crops. Successful protection of host plants against this pathogen is severely hampered by a lack of resistance genes in the hosts and the considerable phenotypic diversity of the fungus. * The aim of this study was to test whether B. cinerea manipulates the immunity-signalling pathways in plants to restore its disease. * We showed that B. cinerea caused disease in Nicotiana benthamiana through the activation of two plant signalling genes, EDS1 and SGT1, which have been shown to be essential for resistance against biotrophic pathogens; and more interestingly, virus-induced gene silencing of these two plant signalling components enhanced N. benthamiana resistance to B. cinerea. Finally, plants expressing the baculovirus antiapoptotic protein p35 were more resistant to this necrotrophic pathogen than wild-type plants. * This work highlights a new strategy used by B. cinerea to establish disease. This information is important for the design of strategies to improve plant pathogen resistance.  相似文献   

13.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.  相似文献   

14.
We describe the characterization of a novel gain-of-function Arabidopsis mutant, dll1 (disease-like lesions1), which spontaneously develops lesions mimicking bacterial speck disease and constitutively expresses biochemical and molecular markers associated with pathogen infection. Despite the constitutive expression of defense-related responses, dll1 is unable to suppress the growth of virulent pathogens. However, dll1 elicits normal hypersensitive response in response to avirulent pathogens, thus indicating that dll1 is not defective in the induction of normal resistance responses. The lesion+ leaves of dll1 support the growth of hrcC mutant of Pseudomonas syringae, which is defective in the transfer of virulence factors into the plant cells, and therefore non-pathogenic to wild-type Col-0 plants. This suggests that dll1 intrinsically expresses many of the cellular processes that are required for pathogen growth during disease. Epistasis analyses reveal that salicylic acid and NPR1 are required for lesion formation, while ethylene modulates lesion development in dll1, suggesting that significant overlap exist between the signalling pathways leading to resistance- and disease-associated cell death. Our results suggest that host cell death during compatible interactions, at least in part, is genetically controlled by the plant and DLL1 may positively regulate this process.  相似文献   

15.
Our previous observation that host plant extracts induce production and secretion of mannitol in the tobacco pathogen Alternaria alternata suggested that, like their animal counterparts, plant pathogenic fungi might produce the reactive oxygen quencher mannitol as a means of suppressing reactive oxygen-mediated plant defenses. The concurrent discovery that pathogen attack induced mannitol dehydrogenase (MTD) expression in the non-mannitol-containing host tobacco suggested that plants, unlike animals, might be able to counter this fungal suppressive mechanism by catabolizing mannitol of fungal origin. To test this hypothesis, transgenic tobacco plants constitutively expressing a celery Mtd cDNA were produced and evaluated for potential changes in resistance to both mannitol- and non-mannitol-secreting pathogens. Constitutive expression of the MTD transgene was found to confer significantly enhanced resistance to A. alternata, but not to the non-mannitol-secreting fungal pathogen Cercospora nicotianae. These results are consistent with the hypothesis that MTD plays a role in resistance to mannitol-secreting fungal plant pathogens.  相似文献   

16.
17.
18.
Bacterial attachment to host cells is one of the earliest events during bacterial colonization of host tissues and thus a key step during infection. The biochemical and functional characterization of adhesins mediating these initial bacteria-host interactions is often compromised by the presence of other bacterial factors, such as cell wall components or secreted molecules, which interfere with the analysis. This protocol describes the production and use of biomimetic materials, consisting of pure recombinant adhesins chemically coupled to commercially available, functionalized polystyrene beads, which have been used successfully to dissect the biochemical and functional interactions between individual bacterial adhesins and host cell receptors. Protocols for different coupling chemistries, allowing directional immobilization of recombinant adhesins on polymer scaffolds, and for assessment of the coupling efficiency of the resulting “bacteriomimetic” materials are also discussed. We further describe how these materials can be used as a tool to inhibit pathogen mediated cytotoxicity and discuss scope, limitations and further applications of this approach in studying bacterial - host interactions.  相似文献   

19.
During the course of their co-evolution, plants and pathogens have evolved an intricate relationship resulting from a continuous exchange of molecular information. Pathogens have developed an array of offensive strategies to parasitize plants and, in turn, plants have deployed a wide range of defence mechanisms similar in some respects to the immune defences produced in animals. The recent advances in molecular biology and plant transformation have provided evidence that sensitizing a plant to respond more rapidly to infection could confer increased protection against virulent pathogens. One important facet in ascertaining the significance of defence molecules in plant disease resistance is the exact knowledge of their spatio-temporal distribution in stressed plant tissues. In an effort to understand the process associated with the induction of plant disease resistance, the effect of microbial and chemical elicitors on the plant cell response during attack by fungal pathogens was investigated and the mechanisms underlying the expression of resistance to bacteria and nematodes studied by both histo- and cytochemistry. Evidence is provided that the disease-resistance response correlates with changes in cell biochemistry and physiology that are accompanied by structural modifications including the formation of callose-enriched wall appositions and the infiltration of phenolic compounds at sites of potential pathogen penetration. Activation of the phenylpropanoid pathway is a crucial phenomenon involved in pathogen growth restriction and host cell survival under stress conditions. Ultrastructural and cytochemical approaches have the potential to significantly improve our knowledge of how plants defend themselves and how plant disease resistance is expressed at the cell level.  相似文献   

20.
The attempted infection of a plant by a pathogen, such as a fungus or an Oomycete, may be regarded as a battle whose major weapons are proteins and smaller chemical compounds produced by both organisms. Indeed, plants produce an astonishing plethora of defense compounds that are still being discovered at a rapid pace. This pattern arose from a multi-million year, ping-pong?type co-evolution, in which plant and pathogen successively added new chemical weapons in this perpetual battle. As each defensive innovation was established in the host, new ways to circumvent it evolved in the pathogen. This complex co-evolution process probably explains not only the exquisite specificity observed between many pathogens and their hosts, but also the ineffectiveness or redundancy of some defensive genes which often encode enzymes with overlapping activities. Plants evolved a complex, multi-level series of structural and chemical barriers that are both constitutive or preformed and inducible. These defenses may involve strengthening of the cell wall, hypersensitive response (HR), oxidative burst, phytoalexins and pathogenesis-related (PR) proteins. The pathogen must successfully overcome these obstacles before it succeeds in causing disease. In some cases, it needs to modulate or modify plant cell metabolism to its own benefit and/or to abolish defense reactions. Central to the activation of plant responses is timely perception of the pathogen by the plant. A crucial role is played by elicitors which, depending on their mode of action, are broadly classified into nonspecific elicitors and highly specific elicitors or virulence effector/avirulence factors. A protein battle for penetration is then initiated, marking the pathogen attempted transition from extracellular to invasive growth before parasitism and disease can be established. Three major types of defense responses may be observed in plants: non-host resistance, host resistance, and host pathogenesis. Plant innate immunity may comprise a continuum from non-host resistance involving the detection of general elicitors to host-specific resistance involving detection of specific elicitors by R proteins. It was generally assumed that non-host resistance was based on passive mechanisms and that nonspecific rejection usually arose as a consequence of the non-host pathogen failure to breach the first lines of plant defense. However, recent evidence has blurred the clear-cut distinction among non-host resistance, host-specific resistance and disease. The same obstacles are also serious challenges for host pathogens, reducing their success rate significantly in causing disease. Indeed, even susceptible plants mount a (insufficient) defense response upon recognition of pathogen elicited molecular signals. Recent evidence suggests the occurrence of significant overlaps between the protein components and signalling pathways of these types of resistance, suggesting the existence of both shared and unique features for the three branches of plant innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号