首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to autoantibodies that are functionally silenced or deleted, IgG Abs that react with autologous insulin routinely follow hormone administration and arise spontaneously in autoimmune (type I) diabetes mellitus. To understand Ab interactions with autologous insulin, rat proinsulin I and 32 alanine substituted analogues were expressed as fusion proteins and used to examine 16 anti-insulin mAb in ELISA. The results identify several amino acid residues that contribute to binding by a large majority (>75%) of mAb, although no single residue is uniformly required for binding by all mAb. Replacements at charged or polar residues on the insulin surface including A4 (Asp), A5 (Gln), A9 (Ser) A12 (Ser), A17 (Gln), A18 (Asn), B13 (Glu), and B21 (Glu) consistently decreased mAb binding. Single alanine substitutions at positions A16 (Leu), A11 (Cys), B8 (Gly), and B15 (Leu) that are predicted to alter the core structure or chain folding vary widely in their impact on Ab binding. mAb that bind insulin preferentially on solid phase (i.e., ELISA) are highly sensitive to replacement of single residues, and substitutions that alter conformation abolish binding. In contrast, high affinity mAb that bind insulin in solution are relatively insensitive to substitutions at single residues, and they maintain binding to all mutants, including those with disrupted conformation. For such high affinity mAb, replacement of long hydrophobic side chains can augment binding, suggesting mAb interactions with insulin include an induced fit. Thus, the ability of insulin to function as a "molten globule" may contribute to the diversity and autoreactivity of the anti-insulin repertoire.  相似文献   

2.
An insulin A chain analogue, [A13-14 GABA, A21 Ala]A chain, for which the dipeptide Leu-Try at A13-A14 was substituted by a non-coded amino acid, gamma-amino butyric acid (GABA) and A21 Asn by Ala, was prepared by stepwise Fmoc solid-phase manual synthesis and then combined with the natural B chain of porcine insulin to yield an insulin analogue, [A13-14 GABA, A21Ala] porcine insulin (GABA substituted insulin). This insulin analogue still retains 50% in vivo biological activity and 59% in receptor binding capacity. It can also be crystallized. These results indicate that its overall conformation is similar to the native form and that the side chains of A13Leu and A14Tyr are not essential for insulin activity. In addition, the replacement of a normal C-N peptide bond by an unnatural C-C bond may have general meaning in structure and function studies of other proteins.  相似文献   

3.
Hua QX  Nakagawa SH  Jia W  Hu SQ  Chu YC  Katsoyannis PG  Weiss MA 《Biochemistry》2001,40(41):12299-12311
The landscape paradigm of protein folding can enable preferred pathways on a funnel-like energy surface. Hierarchical preferences may be manifest as a nonrandom pathway of disulfide pairing. Stepwise stabilization of structural subdomains among on-pathway intermediates is proposed to underlie the disulfide pathway of proinsulin and related molecules. Here, effects of pairwise serine substitution of insulin's exposed interchain disulfide bridge (Cys(A7)-Cys(B7)) are characterized as a model of a late intermediate. Untethering cystine A7-B7 in an engineered monomer causes significantly more marked decreases in the thermodynamic stability and extent of folding than occur on pairwise substitution of internal cystine A6-A11 [Weiss, M. A., Hua, Q. X., Jia, W., Chu, Y. C., Wang, R. Y., and Katsoyannis, P. G. (2000) Biochemistry 39, 15429-15440]. Although substantially disordered and without significant biological activity, the untethered analogue contains a molten subdomain comprising cystine A20-B19 and a native-like cluster of hydrophobic side chains. Remarkably, A and B chains make unequal contributions to this folded moiety; the B chain retains native-like supersecondary structure, whereas the A chain is largely disordered. These observations suggest that the B subdomain provides a template to guide folding of the A chain. Stepwise organization of insulin-like molecules supports a hierarchic view of protein folding.  相似文献   

4.
Insulin provides a model of induced fit in macromolecular recognition: the hormone's conserved core is proposed to contribute to a novel receptor-binding surface. The core's evolutionary invariance, unusual among globular proteins, presumably reflects intertwined constraints of structure and function. To probe the architectural basis of such invariance, we have investigated hydrophobic substitutions of a key internal side chain (Leu(A16)). Although the variants exhibit perturbed structure and stability, moderate receptor-binding activities are retained. These observations suggest that the A16 side chain provides an essential structural buttress but unlike neighboring core side chains, does not itself contact the receptor. Among invertebrate insulin-like proteins, Leu(A16) and other putative core residues are not conserved, suggesting that the vertebrate packing scheme is not a general requirement of an insulin-like fold. We propose that conservation of Leu(A16) among vertebrate insulins and insulin-like growth factors is a side consequence of induced fit: alternative packing schemes are disallowed by lack of surrounding covariation within the hormone's hidden receptor-binding surface. An analogy is suggested between Leu(A16) and the spandrels of San Marco, tapering triangular spaces at the intersection of the dome's arches. This celebrated metaphor of Gould and Lewontin emphasizes the role of interlocking constraints in the evolution of biological structures.  相似文献   

5.
Salmon calcitonin S-sulfonated analog (abbreviated as [S-SO(3)(-)]rsCT) was prepared by introducing two sulfonic groups into the side chains of Cys1 and Cys7 of recombinant salmon calcitonin. The hypocalcemic potency of this open-chain analog is 5500IU/mg, which is about 30% higher than that (4500IU/mg) of the wild type. The solution conformation of [S-SO(3)(-)]rsCT was studied in aqueous trifluoroethanol solution by CD, 2D-NMR spectroscopy, and distance geometry calculations. In the mixture of 60% TFE and 40% water, the peptide assumes an amphipathic alpha-helix in the region of residues 4-22, which is one turn longer than that of the native sCT. The structural feature analysis of the peptide revealed the presence of hydrophobic surface composed of five hydrophobic side chains of residues Leu4, Leu9, Leu12, Leu16, and Leu19, and a network of salt-bridges that consisted of a tetrad of oppositely charged side chains (Cys7-SO(3)(-)-Lys11(+)-Glu15(-)-Lys18(+)). The multiple salt bridges resulted in the stabilization of the longer amphipathic alpha-helix. Meanwhile, the higher hypocalcemic potency of the peptide could be attributed to the array of hydrophobic side chains of five leucine residues of the amphipathic alpha-helix.  相似文献   

6.
Huang QL  Zhao J  Tang YH  Shao SQ  Xu GJ  Feng YM 《Biochemistry》2007,46(1):218-224
Although insulin and insulin-like growth factor-1 (IGF-1) belong to the insulin superfamily and share highly homologous sequences, similar tertiary structure, and a common ancestor molecule, amphioxus insulin-like peptide, they have different folding behaviors: IGF-1 folds into two thermodynamically stable tertiary structures (native and swap forms), while insulin folds into one unique stable structure. To further understand which part of the sequence determines their different folding behavior, based on previous reports from the laboratory, two peptide models, [B9A][1-4]porcine insulin precursor (PIP) and [B10E][1-4]PIP, were constructed. The plasmids encoding the peptides were transformed into yeast cells for expression of the peptides; the results showed that the former peptide was expressed as single component, while the latter was expressed as a mixture of two components (isomer 1 and isomer 2). The expression results together with studies of circular dichoism, disulfide rearrangement, and refolding lead us to deduce that isomer 1 corresponds to the swap form and the isomer 2 corresponds to the native form. We further demonstrate that the sequence 1-4 plus B9 of IGF-1 B-domain can make PIP fold into two structures, while sequence 1-5 of insulin B-chain can make IGF-1 fold into one unique structure. In other words, it is the IGF-1 B-domain sequence that 1-4 allows IGF-1 folding into two thermodynamically stable tertiary structures; this sequence plus its residue B9E can change PIP folding behavior from folding into one unique structure to two thermodynamically stable structures, like that of IGF-1.  相似文献   

7.
Structural uniqueness is characteristic of native proteins and is essential to express their biological functions. The major factors that bring about the uniqueness are specific interactions between hydrophobic residues and their unique packing in the protein core. To find the origin of the uniqueness in their amino acid sequences, we analyzed the distribution of the side chain rotational isomers (rotamers) of hydrophobic amino acids in protein tertiary structures and derived deltaS(contact), the conformational-entropy changes of side chains by residue-residue contacts in each secondary structure. The deltaS(contact) values indicate distinct tendencies of the residue pairs to restrict side chain conformation by inter-residue contacts. Of the hydrophobic residues in alpha-helices, aliphatic residues (Leu, Val, Ile) strongly restrict the side chain conformations of each other. In beta-sheets, Met is most strongly restricted by contact with Ile, whereas Leu, Val and Ile are less affected by other residues in contact than those in alpha-helices. In designed and native protein variants, deltaS(contact) was found to correlate with the folding-unfolding cooperativity. Thus, it can be used as a specificity parameter for designing artificial proteins with a unique structure.  相似文献   

8.
Solution structure of a mini IGF-1.   总被引:2,自引:1,他引:1       下载免费PDF全文
Mini insulin-like growth factor 1, an inactive insulin-like growth factor 1 mutant lacking the C region, was studied by 2D NMR spectroscopy. Resonances were assigned for almost all protons of the 57 amino acid residues. The 3D structure of the protein was determined by distance geometry methods. Three helical segments; Ala 8-Cys 18, Gly 42-Phe 49, and Leu 54-Cys 61, were identified, corresponding to those present in wild-type insulin-like growth factor 1 and in single-chain insulin. Their relative orientation, however, was found to be changed. This change is connected with a displacement of the Phe 23-Tyr 24-Phe 25-Asn 26 beta-strand-like segment, i.e., of aromatic side chains known to be important for receptor binding. Thus, deletion of the C region of IGF-1 results in a substantial tertiary structural rearrangement that accounts for the loss of receptor affinity.  相似文献   

9.
The proteolytic attack of the cholesterol-binding pancreatic proteinase (CBPP) on the oxidized insulin A and B chains as well as on glucagon was investigated by kinetic studies. The reaction products were isolated by high-pressure liquid chromatography and identified by amino acid analysis. The combined results reveal a pronounced selectivity of CBPP for the peptide bonds at the carboxy ends of Ala, Val, Leu, Ser, His and Thr residues with Ala, Val and Leu most favoured, indicating a close catalytic relationship to porcine pancreatic elastase [Narayanan, A. S. & Anwar, R. A. (1969) Biochem. J. 114, 11-17] and the anionic porcine pancreatic protease E [Kobayashi R., Kobayashi, Y. & Hirs, C. H. W. (1981) J. Biol. Chem. 256, 2460-2465] which resembles human pancreatic elastase 1. The immunological comparison indeed disclosed the identity of CBPP with human pancreatic elastase 1.  相似文献   

10.
Guo ZY  Shen L  Feng YM 《Biochemistry》2002,41(5):1556-1567
Although insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar tertiary structure, weakly overlapped biological activity, and a common ancestor, the two highly homologous sequences encode different folding behavior: insulin folds into one unique stable tertiary structure while IGF-1 folds into two disulfide isomers with similar thermodynamic stability. To further elucidate the molecular mechanism of their different folding behavior, we prepared two single-chain hybrids of insulin and IGF-1, Ins(A)/IGF-1(B) and Ins(B)/IGF-1(A), as well as a mini-IGF-1 by means of protein engineering and studied their structure as well as folding behavior. Both mini-IGF-1 and Ins(A)/IGF-1(B) fold into two thermodynamically stable disulfide isomers in vivo and in vitro just like that of IGF-1, while Ins(B)/IGF-1(A) folds into one unique thermodynamically stable tertiary structure in vivo and in vitro just like that of insulin. So we deduce that the different folding behavior of insulin and IGF-1 is mainly controlled by their B-chain/domain. By V8 endoproteinase digestion and circular dichroism analysis, as well as insulin receptor binding assay, we deduce that Ins(B)/IGF-1(A), isomer 2 of mini-IGF-1, and isomer 2 of Ins(A)/IGF-1(B) adopt native IGF-1/insulin-like three-dimensional structure with native disulfides, while isomer 1 of mini-IGF-1 and isomer 1 of Ins(A)/IGF-1(B) adopt the swap IGF-1-like three-dimensional structure with swap disulfides.  相似文献   

11.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

12.
A new simple fast and reproducible purification procedure for the proteinase from rat liver mitochondria has been worked out. The specificity of cleavage of peptide bonds in glucagon, oxidized A and B chains of insulin and yeast proteinase B inhibitor by the proteinase of the inner mitochondrial membrane has been studied. The proteinase hydrolyzed three peptide bonds in glucagon, Tyr (13) - Leu (14), Trp (25) - Leu (26) and Phe (22) - Val (23) (minor cleavage site); none in the insulin A chain; one in the B chain of insulin, Tyr (16) - Leu (17); and three in the yeast proteinase B inhibitor, Phe (4) - Ile (5), Phe (20) - Leu (21) and Tyr (41) - Thr (42) (minor cleavage site).Thus, the mitochondrial proteinase cleaves peptide bonds at the carboxyl site of an aromatic amino acid and the amino site of a leucine, isoleucine, threonine or valine. The comparison with chymotrypsin A shows that the mitochondrial proteinase cleaves peptide bonds in a more restricted manner.  相似文献   

13.
In neuronal and endocrine cells, peptide hormones are selectively segregated into storage granules, while other proteins are exported continuously without storage. Sorting of hormones by cellular machinery involves the recognition of specific structural domains on prohormone molecules. Since the propeptide of insulin is known to play an important role in its three-dimensional structure, it is reasonable to speculate that targeting of proinsulin to storage granules would require a functional connecting peptide. To test this hypothesis, we constructed two mutations in human proinsulin with different predicted structures. In one mutation, Ins delta C, the entire C peptide was deleted, resulting in an altered insulin in which the B and the A chains are joined contiguously. In the other mutation, Ins/IGF, the C peptide of proinsulin was replaced with the unrelated 12-amino acid connecting peptide of human insulin-like growth factor-I; this substitution should permit correct folding of the B and A chains to form a tertiary structure similar to that of proinsulin. By several biochemical and morphological criteria, we found that Ins/IGF is efficiently targeted to storage granules, suggesting that the C peptide of proinsulin does not contain necessary sorting information. Unexpectedly, Ins delta C, which presumably cannot fold properly, is also targeted to granules at a high efficiency. These results imply that either the targeting machinery can tolerate changes in the tertiary structure of transported proteins, or that the B and A chains of insulin can form a relatively intact three-dimensional structure even in the absence of C peptide.  相似文献   

14.
The Raman spectra of crystalline H-ProLeuGlyNH2 which has a type II β turn, crystalline S-benzylCysProLeuGlyNH2 which has a type I β-turn, and crystalline gramicidin S which has two β turns and β-sheet structure in its conformation, were investigated. The amide I and amide III bands of the peptides with β turns were generally different from those which are diagnostic for α-helix and β-sheet conformations. The patterns of the amide I and amide III bands, when examined together, indicate that Raman spectra can provide diagnostic evidence for β-turn structure in peptides.  相似文献   

15.
The insulins of eutherian mammals contain histidines at positions B5 and B10. The role of His(B10) is well defined: although not required in the mature hormone for receptor binding, in the islet beta cell this side chain functions in targeting proinsulin to glucose-regulated secretory granules and provides axial zincbinding sites in storage hexamers. In contrast, the role of His(B5) is less well understood. Here, we demonstrate that its substitution with Ala markedly impairs insulin chain combination in vitro and blocks the folding and secretion of human proinsulin in a transfected mammalian cell line. The structure and stability of an Ala(B5)-insulin analog were investigated in an engineered monomer (DKP-insulin). Despite its impaired foldability, the structure of the Ala(B5) analog retains a native-like T-state conformation. At the site of substitution, interchain nuclear Overhauser effects are observed between the methyl resonance of Ala(B5) and side chains in the A chain; these nuclear Overhauser effects resemble those characteristic of His(B5) in native insulin. Substantial receptor binding activity is retained (80 +/- 10% relative to the parent monomer). Although the thermodynamic stability of the Ala(B5) analog is decreased (DeltaDeltaG(u) = 1.7 +/- 0.1 kcal/mol), consistent with loss of His(B5)-related interchain packing and hydrogen bonds, control studies suggest that this decrement cannot account for its impaired foldability. We propose that nascent long-range interactions by His(B5) facilitate alignment of Cys(A7) and Cys(B7) in protein-folding intermediates; its conservation thus reflects mechanisms of oxidative folding rather than structure-function relationships in the native state.  相似文献   

16.
The specificity of thermitase (EC 3.4.21.14), a microbial thermostable serine proteinase fromThermoactinomyces vulgaris, with several oligo- and polypeptide substrates was investigated. Preferred hydrolysis of peptide bonds with a hydrophobic amino acid at the carboxylic site was observed. The proved carboxypeptidolytic splitting of Leu5-enkephalin and bradykinin, as well as the noncleavability of casomorphins by thermitase, can be explained by the position of the glycine and proline residues in these substrates. Major cleavage sites in the oxidized insulin B chain in a 15-min incubation with thermitase at Gln4-His5, Ser9-His10, Leu11-Val12, Leu15-Tyr16 and in the oxidized insulin A chain at Cys SO3H11-Ser12, Leu13-Tyr14, and Leu16-Glu17 were observed. Additional cleavages of the bonds His5-Leu6, Arg22-Gly23, Phe24-Phe25, Phe25-Tyr26, and Tyr26-Thr27 in the oxidized B chain and Cys SO3H6-Cys SO3H7 and Tyr19-Cys SO3H20 in the oxidized A chain in 2-h incubations with thermitase were also noted. Hydrolysis of salmine A I component in a 10-min incubation was observed mainly at four peptide bonds: Arg5-Ser6, Ser6-Ser7, Arg18-Val19, and Gly27-Gly28. The cleavage sites of thermitase in both insulin chains were similar to those reported in the studies of subtilisins.  相似文献   

17.
The A and B chains of insulin combine to form native disulfide bridges without detectable isomers. The fidelity of chain combination thus recapitulates the folding of proinsulin, a precursor protein in which the two chains are tethered by a disordered connecting peptide. We have recently shown that chain combination is blocked by seemingly conservative substitutions in the C-terminal alpha-helix of the A chain. Such analogs, once formed, nevertheless retain high biological activity. By contrast, we demonstrate here that chain combination is robust to non-conservative substitutions in the N-terminal alpha-helix. Introduction of multiple glycine substitutions into the N-terminal segment of the A chain (residues A1-A5) yields analogs that are less stable than native insulin and essentially without biological activity. (1)H NMR studies of a representative analog lacking invariant side chains Ile(A2) and Val(A3) (A chain sequence GGGEQCCTSICSLYQLENYCN; substitutions are italicized and cysteines are underlined) demonstrate local unfolding of the A1-A5 segment in an otherwise native-like structure. That this and related partial folds retain efficient disulfide pairing suggests that the native N-terminal alpha-helix does not participate in the transition state of the reaction. Implications for the hierarchical folding mechanisms of proinsulin and insulin-like growth factors are discussed.  相似文献   

18.
采用一种简单的“甲醇-水-0.1%三氟醋酸”作为洗脱体系的反相高效液相层析对研究胰岛素结构与功能关系,以及A链和B链相互作用时所用的一些胰岛素衍生物进行了快速、灵敏、准确的分析和鉴定。 胰岛素的S-磺酸型A链和B链只经一次离子交换层析纯化,经鉴定结果表明是均一的。S-硫甲基型A链和B链基本上也是均一的。通过对胰岛素还原产物的分析确定了能保证胰岛素折分完全并对其重组较为有利的还原条件。去B链羧端五肽(B26—30)胰岛素,以及去B链羧端八肽(B23—30)胰岛素能同时与天然胰岛素清楚地分离。一级结构差别极小的猪胰岛素和牛胰岛素也可得到分辨。胰岛素的羧端缩短的B链和A链重组的定量分析表明B链羧端肽段不但对胰岛素分子的生物活力的体现,而且在A链和B链的正确重组中都起着重要的作用。  相似文献   

19.
Hua QX  Jia W  Frank BH  Phillips NF  Weiss MA 《Biochemistry》2002,41(50):14700-14715
Proinsulin contains six cysteines whose specific pairing (A6-A11, A7-B7, and A20-B19) is a defining feature of the insulin fold. Pairing information is contained within A and B domains as demonstrated by studies of insulin chain recombination. Two insulin isomers containing non-native disulfide bridges ([A7-A11,A6-B7,A20-B19] and [A6-A7,A11-B7,A20-B19]), previously prepared by directed chemical synthesis, are metastable and biologically active. Remarkably, the same two isomers are preferentially formed from native insulin or proinsulin following disulfide reassortment in guanidine hydrochloride. The absence of other disulfide isomers suggests that the observed species exhibit greater relative stability and/or kinetic accessibility. The structure of the first isomer ([A7-A11,A6-B7,A20-B19], insulin-swap) has been described [Hua, Q. X., Gozani, S. N., Chance, R. E., Hoffmann, J. A., Frank, B. H., and Weiss, M. A. (1995) Nat. Struct. Biol. 2, 129-138]. Here, we demonstrate that the second isomer (insulin-swap2) is less ordered than the first. Nativelike elements of structure are retained in the B chain, whereas the A chain is largely disordered. Thermodynamic studies of guanidine denaturation demonstrate the instability of the isomers relative to native insulin (DeltaDeltaG(u) > 3 kcal/mol). In contrast, insulin-like growth factor I (IGF-I) and the corresponding isomer IGF-swap, formed as alternative products of a bifurcating folding pathway, exhibit similar cooperative unfolding transitions. The insulin isomers are similar in structure and stability to two-disulfide analogues whose partial folds provide models of oxidative folding intermediates. Each exhibits a nativelike B chain and less-ordered A chain. This general asymmetry is consistent with a hierarchical disulfide pathway in which nascent structure in the B chain provides a template for folding of the A chain. Structures of metastable disulfide isomers provide probes of the topography of an energy landscape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号