首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR(-/-) mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor but remained attenuated in IFN-gamma receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-alpha/beta production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-alpha/beta and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-alpha/beta production, we infected susceptible IFNAR(-/-) mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-alpha/beta production. These results demonstrate that the ability of RVFV to inhibit IFN-alpha/beta production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist.  相似文献   

6.
7.
8.
9.
10.
11.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

12.
13.
Punta Toro virus (PTV; family Bunyaviridae , genus Phlebovirus ) causes severe hepatic damage through brisk apoptosis of hepatocytes. In the present study, two viral proteins encoded by the S segment of the viral genome, non-structural (NSs) and nucleocapsid protein (N), were examined for their roles in apoptosis. Expression of NSs in HepG2 cells led to apoptosis in 45% of transfected cells, and with N, 28%, on average. These levels represent a four- to an eightfold increase over cells transfected with the mutated protein vectors. Caspase-3, -8 and -9 activities were increased by N protein when compared with the control NC ( P < 0.05), and by NSsA and NSsB, as compared to control NSsC ( P < 0.01). Treatment of the transfected cells with caspase-8 or -9 inhibitors markedly decreased apoptosis. Neutralization of TNF-α or Fas ligand had no effect on apoptosis. These results indicate that both NSs and N are responsible for causing hepatocyte apoptosis by triggering the extrinsic caspase-8 and intrinsic caspase-9 pathways.  相似文献   

14.
Streptococcus pyogenes is a Gram-positive human pathogen that is recognized by yet unknown pattern recognition receptors (PRRs). Engagement of these receptor molecules during infection with S. pyogenes, a largely extracellular bacterium with limited capacity for intracellular survival, causes innate immune cells to produce inflammatory mediators such as TNF, but also type I interferon (IFN). Here we show that signaling elicited by type I IFNs is required for successful defense of mice against lethal subcutaneous cellulitis caused by S. pyogenes. Type I IFN signaling was accompanied with reduced neutrophil recruitment to the site of infection. Mechanistic analysis revealed that macrophages and conventional dendritic cells (cDCs) employ different signaling pathways leading to IFN-beta production. Macrophages required IRF3, STING, TBK1 and partially MyD88, whereas in cDCs the IFN-beta production was fully dependent on IRF5 and MyD88. Furthermore, IFN-beta production by macrophages was dependent on the endosomal delivery of streptococcal DNA, while in cDCs streptococcal RNA was identified as the IFN-beta inducer. Despite a role of MyD88 in both cell types, the known IFN-inducing TLRs were individually not required for generation of the IFN-beta response. These results demonstrate that the innate immune system employs several strategies to efficiently recognize S. pyogenes, a pathogenic bacterium that succeeded in avoiding recognition by the standard arsenal of TLRs.  相似文献   

15.
Unlike all the other Rift Valley fever virus strains (Bunyaviridae, Phlebovirus) studied so far, clone 13, a naturally attenuated virus, does not form the filaments composed of the NSs nonstructural protein in the nuclei of infected cells (R. Muller, J. F. Saluzzo, N. Lopez, T. Drier, M. Turell, J. Smith, and M. Bouloy, Am. J. Trop. Med. Hyg. 53:405-411, 1995). This defect is correlated with a large in-frame deletion in the NSs coding region of the S segment of the tripartite genome. Here, we show that the truncated NSs protein of clone 13 is expressed and remains in the cytoplasm, where it is degraded rapidly by the proteasome. Through the analysis of reassortants between clone 13 and a virulent strain, we localized the marker(s) of attenuation in the S segment of this attenuated virus. This result raises questions regarding the role of NSs in pathogenesis and highlights, for the first time in the Bunyaviridae family, a major role of the S segment in virulence and attenuation, possibly associated with a defect in the nonstructural protein.  相似文献   

16.
La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response.  相似文献   

17.
18.
19.
20.
In vivo competition experiments were designed to identify the role of trans-acting cellular factors in the virus-inducible activation of the interferon-beta promoter. Co-transfection of a constant amount of IFN-beta/CAT test gene and increasing amounts of competitive DNA containing different IFN regulatory domains into human epithelioid 293 cells identified a low abundance, positive cellular factor(s) that interacts with the IFN regulatory region. Competition of the factor decreases virus-induced and constitutive level expression of the IFN-beta promoter, and also partially inhibits expression from the SV40 promoter. Negative regulatory effects produced by factors interacting with the IFN upstream region (-135 to -202) and with the SV40 enhancer were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号