首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Besides the monoaminergic neurons possessing the whole set of the enzymes of monoamine synthesis from the precursor amino acid and the monoamine membrane transporter, the neurons partly expressing monoaminergic phenotype, one of the enzymes of monoamine synthesis and/or monoamine membrane transporter, have been discovered. The monoenzymatic neurons are widely distributed through the brain being even more numerous than monoaminergic neurons suggesting their important functional role. Most numerous monoenzymatic neurons express individual enzymes of dopamine (DA), tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). TH is enzymatically active in most monoenzymatic neurons converting L-tyrosine to L-DOPA. AADC is enzymatically active in all studied monoenzymatic neurons converting extracellular L-dihydroxyphenylalanine (L-DOPA) or 5-hydroxytryptophan captured from the extracellular space, to DA or serotonin, respectively. Monoenzymatic neurons expressing complementary enzymes of the DA synthetic pathway synthesize this neurotransmitter in cooperation. The cooperative synthesis of monoamines by non-monoaminergic neurons is believed to be a compensatory reaction under the functional insufficiency of monoaminergic neurons. In addition to monoenzymatic neurons, less numerous non-monoaminergic neurons expressing the serotonin membrane transporter but lacking all the enzymes or only rate-limiting enzymes of monoamine synthesis have been discovered. Although the functional significance of these neurons remains uncertain, they most probably represent a temporal store of serotonin captured within the brain either from the intercellular space or the cerebrospinal fluid. Thus, a substantial number of the brain neurons express partly the monoaminergic phenotype, probably, serving to compensate the functional deficiency of monoaminergic neurons.  相似文献   

2.
The ratio of neuron populations expressing either tyrosine hydroxylase or aromatic L-amino acid decarboxylase, which are enzymes of dopamine synthesis, was estimated quantitatively in the accurate nucleus of male and female rats on the 21st day of intrauterine development, the 9th day of postnatal development, and in adult animals. The enzymes in neurons were revealed by double immunocytochemical labeling, followed by identification under a fluorescence microscope. At all the developmental stages, three neuron populations differing in the expression of these enzymes were revealed. By the end of the prenatal period, most of the neurons (99%) contained only one of the enzymes, and the proportion of neurons expressing both enzymes (dopaminergic neurons) did not exceed 1%. During postnatal development, the proportion of neurons with one enzyme proved to decrease, whereas that of dopaminergic neurons increased. However, the latter proportion, even in adult animals, did not exceed 50% of the total number of neurons expressing the enzymes of dopamine synthesis. Thus, the population of neurons expressing both enzymes increases during rat ontogeny, whereas the number of neurons expressing only one enzyme decreases.  相似文献   

3.
Dopamine(DA), the most widely distributed in the nervous system and functionally important chemical signal, is synthesized in DA-ergic neurons from L-tyrosine by means of two enzymes, tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). Apart from the enzymes, specific DA transporter is an attribute of DA-ergic neurons. In the mid eighties of the last century, in addition to DA-ergic neurons, those expressing only one enzyme, TH or AADC, have been discovered. These "monoenzymatic" neurons occurred to be more numerous and more widely distributed in the brain compared to DA-ergic neurons that manifests their wide involvement to the brain functioning. It has been demonstrated that the monoenzymatic neurons expressing complementary enzymes of DA synthesis produce this neurotransmitter in cooperation. In this case, L-tyrosine is transformed to L-DOPA in TH containing neurons that is followed by L-DOPA release and uptake from the intercellular space to AADC containing neurons for DA synthesis. Moreover, the L-DOPA uptake to DA-ergic or serotoninergic neurons results either in the increase or the onset of DA synthesis in addition to serotonin, respectively. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is one of the adaptive reactions serving to compensate the functional insufficiency of DA-ergic neurons. For instance, hyperprolactinemia and the deficiency of DA, prolactin-inhibiting hormone, which is developed under degeneration of DA-ergic neurons of the arcuate nucleus, are compensated with time due to the increase of the number of monoenzymatic neurons and cooperative synthesis of DA in the nucleus. It is supposed that the same compensatory cooperative synthesis of DA is turned on under the degeneration of DA-ergic neurons of the nigrostriatal system that is manifested by the appearance of non-dopaminergic neurons expressing enzymes of DA synthesis in the deafferentated striatum. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is under the control by intercellular signals, catecholamines, neurotrophic (growth) factors and, perhaps, hormones. Thus, non-dopaminergic monoenzymatic neurons expressing enzymes of DA synthesis produce this neurotransmitter in cooperation that is a compensatory reaction under functional insufficiency of DA-ergic neurons, in neurodegenerative diseases, hyperprolactinemia and Parkinson's disease, in particular.  相似文献   

4.
Our hypothesis was tested in respect to dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the DA synthetic pathway. According to the hypothesis, L-dihydroxyphenylalanine (L-DOPA) synthesised in tyrosine hydroxylase(TH)-expressing neurons for conversion to dopamine. The mediobasal hypothalamus of rats on the 21st embryonic day was used as an experimental model. The fetal substantia nigra containing dopaminergic neurons served as control. Dopamine and L-DOPA were measured by high performance liquid chromatography in cell extracts and incubation medium in presence or absence of L-tyrosine. L-tyrosine administration increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of dopamine synthesis in substantia nigra and a decrease in the mediobasal hypothalamus. This is, probably, due to an L-tyrosine-induced competitive inhibition of the L-DOPA transport to monoenzymatic AADC neurons after its release from the monoenzymatic TH neurons. This study provides a convincing evidence of dopamine synthesis by non-dopaminergic neurons expressing TH or AADC, in cooperation.  相似文献   

5.
Topographic interrelations of the arcuate nucleus (AN) neurons expressing the dopamine-synthesized enzymes, tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AAD), as well as projections of axons of these neurons to the medial eminence were studied in male rats at the 21st embryonal and 9th postnatal days as well as in adult animals. The method of double immunocytochemical labeling and its modification were used to reveal these enzymes. For identification of immunoreactive neurons, a confocal microscope was used. At all ontogenetic stages, three populations of neurons were found, which differed by composition of the dopamine-synthesizing enzymes as well as by the character of topographic interrelations of the TH-expressing monoenzyme neurons with the AAD-expressing neurons. In ontogeny, the topographic tight junctions are formed between the monoenzyme TH- and AAD expressing neurons at the level of both the cell body and the distal axons, which seems to increase effectiveness of the L-dihydroxyphenylalanine (L-DOPA) transfer from the TH- to the AAD-expressing neurons. The TH- and AAD expressing monoenzyme neurons project their axons to the medial prominence to provide entrance of the products of the specific syntheses into the pituitary portal circulating system. Thus, the morphological data obtained confirm indirectly our hypothesis about a cooperative participation of the TH- and AAD-expressing monoenzyme neurons of the AN in the dopamine synthesis.  相似文献   

6.
7.
Dopamine (DA), synthesized in the mediobasal hypothalamus by dopaminergic neurons containing two enzymes of DA synthesis–tyrosine hydroxylase and decarboxylase of aromatic L-amino acids, or by monoenzymatic non-dopaminergic neurons containing one DA synthesis enzyme in cooperation, is known to have an inhibitory effect on prolactin secretion. Deterioration of this inhibitory control leads to an increase in prolactin concentration in the blood and to the development of hyperprolactinemia syndrome. In a rat model of hyperprolactinemia induced by administration of a neurotoxin causing degeneration of dopaminergic and noradrenergic neurons, the level of DA first decreases, leading to an increase in prolactin level (decompensation stage), while later both levels are restored to normal (compensation stage). However, the mechanism of such compensation is still not clear. The aim of the present study was to analyze whether the increase in cooperative synthesis of DA by monoenzymatic neurons during hyperprolactinemia is a manifestation of a compensatory mechanism representing a particular case of neuroplasticity. The level of cooperative synthesis in the hyperprolactinemia model and in the control was estimated as the level of synthesis of DA and L-dihydroxyphenylalanine (L-DOPA)–an intermediate product of DA synthesis, when L-DOPA transfer from neurons containing tyrosine hydroxylase into neurons containing aromatic L-amino acid decarboxylase is inhibited. The level of DA synthesis during the decompensation stage was not changed, while during the compensation stage it was lower than the control. Along with a reduction in DA level, during the compensation stage an increase in the extracellular L-DOPA level in the medium was detected. Thus, the compensation of DA deficiency after degeneration of dopaminergic neurons in the mediobasal hypothalamus is due to the increase in cooperative synthesis of DA by monoenzymatic neurons containing one of the complementary enzymes of the DA synthesis pathway.  相似文献   

8.
L-DOPA accumulation in the extracellular medium was detected when the transfer of L-DOPA from the neurons containing tyrosine hydroxylase to the neurons containing aromatic L-amino acid decarboxylase was blocked, under conditions of inhibition of the L-DOPA degradation enzyme. Thus, the missing proof confirming the existence of cooperative synthesis of dopamine by neurons non-dopaminergic was obtained.  相似文献   

9.
Abstract: Investigations of gene therapy for Parkinson's disease have focused primarily on strategies that replace tyrosine hydroxylase. In the present study, the role of aromatic l -amino acid decarboxylase in gene therapy with tyrosine hydroxylase was examined by adding the gene for aromatic l -amino acid decarboxylase to our paradigm using primary fibroblasts transduced with both tyrosine hydroxylase and GTP cyclohydrolase I. We compared catecholamine synthesis in vitro in cultures of cells with tyrosine hydroxylase and aromatic l -amino acid decarboxylase together versus cocultures of cells containing these enzymes separately. l -DOPA and dopamine levels were higher in the cocultures that separated the enzymes. To determine the role of aromatic l -amino acid decarboxylase in vivo, cells containing tyrosine hydroxylase and GTP cyclohydrolase I were grafted alone or in combination with cells containing aromatic l -amino acid decarboxylase into the 6-hydroxydopamine-denervated rat striatum. Grafts containing aromatic l -amino acid decarboxylase produced less l -DOPA and dopamine as monitored by microdialysis. These findings indicate that not only is there sufficient aromatic l -amino acid decarboxylase near striatal grafts producing l -DOPA, but also the close proximity of the enzyme to tyrosine hydroxylase is detrimental for optimal dopamine production. This is most likely due to feedback inhibition of tyrosine hydroxylase by dopamine.  相似文献   

10.
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.Key words: Dopamine D1 and D2 receptors, tubero-infundibular dopamine neurons, dopamine receptor colocalization, arcuate-median eminence complex, volume transmission, luteinizing hormone releasing hormone  相似文献   

11.
The study has been carried out to verify the authors' hypothesis that degeneration of dopaminergic (DA-ergic) neurons of the hypothalamic tuberoinfundibular system and concomitant development of hyperprolactinemia are accompanied by involvement of compensatory synthesis of dopamine (DA) by non-dopaminergic neurons expressing single complementary enzymes of synthesis of this neurotransmitter. Degeneration of DA-ergic neurons was produced by a stereotaxic injection into the brain lateral ventricles of 6-hydroxydopamine (6-OHDA) - a specific neurotoxin of DA-ergic neurons. 14 and 45 days after the toxin administration there were determined concentration of prolactine in peripheral blood by methods of immunoenzyme and radioimmunological analyses as well as the DA amount in the arcuate nucleus by the method of highly efficient liquid chromatography with electrochemical detection. In a part of the animals, slices were prepared from the mediobasal hypothalamus (arcuate nucleus and medial eminence) and perfused with Krebs-Ringer medium; then the DA concentration was determined in the slices and in the incubation medium. 14 days after the neurotoxin administration there were revealed an increase of blood prolactine concentration and a decrease of DA concentration in the arcuate nucleus in vivo as well a decrease of the total DA amount in the slices and incubation medium in experiments in vitro. 45 days after the neurotoxin administration, all the above parameters returned to the normal level. This, the obtained data indicate that the hyperlactinemia and DA deficit appearing during degeneration of the arcuate nucleus DA-ergic neurons seem to be compensated due to an enhancement of DA synthesis by non-dopaminergic monoenzyme neurons of arctuate nucleus.  相似文献   

12.
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.  相似文献   

13.
Agouti-related peptide is expressed in the hypothalamic neurons in humans and animals. Immunohistochemical studies in Wistar rats shows significant changes in the optical density of agouti-related peptide in the neurons of the arcuate hypothalamic nucleus, as well as in their processes in the hypothalamus and nucleus accumbens after 6 h of sleep deprivation (an increase) and after 2 h of post-deprivative sleep (a decrease). Comparison of these findings with the earlier results shows the opposite trends in the changes in the optical density of agouti-related peptide and the speed of the limiting enzyme of dopamine synthesis, tyrosine hydroxylase, in the hypothalamus and in the striatonigral system. An increase in the agouti-related peptide level was accompanied by a decrease in tyrosine hydroxylase, while a decrease in agouti-related peptide, on the contrary, was accompanied by an increase in the tyrosine hydroxylase activity. Our data show the role played by agouti-related peptide as a modulator of the functional activity of the dopaminergic brain neurons. The interrelation between various functions of the body, such as food behavior, sleep, and stress, is considered to be mediated by the participation of the same neurotransmitter systems in their regulation.  相似文献   

14.
In vivo studies, serotonine synthesis in the rat fetal brain was inhibited by p-chlorphenylalanine from the 11th to the 20th embryonic day. Serotonine depletion significantly decreased thyrosine hydroxylase content in the neurones of males and females on the 21st embryonic day and in males--on the 35th postnatal day. In vitro, a co-culture of arquate nucleus' and raphe nucleus' embryonic neurones resulted in a sex-specific increase of the thyrosine hydroxylase level in the former neurones. The raphe nucleus' neurones manifested an increased level of serotonine. The findings suggest an activating long-lasting effect of serotonine afferents on the thyrosine hydroxylase expression in differentiating neurones of the arquate nucleus in rats during prenatal ontogenesis.  相似文献   

15.
Su Y  Duan CL  Zhao CL  Zhao HY  Xu QY  Yang H 《生理学报》2003,55(5):583-588
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。  相似文献   

16.
Alpha-synuclein is a presynaptic protein strongly implicated in Parkinson's disease (PD). Because dopamine neurons are invariably compromised during pathogenesis in PD, we have been exploring the functions of alpha-synuclein with particular relevance to dopaminergic neuronal cells. We previously discovered reduced tyrosine hydroxylase (TH) activity and minimal dopamine synthesis in stably-transfected MN9D cells overexpressing either wild-type or A53T mutant (alanine to threonine at amino acid 53) alpha-synuclein. TH, the rate-limiting enzyme in dopamine synthesis, converts tyrosine to l-dihydroxyphenylalanine (L-DOPA), which is then converted to dopamine by the enzyme, aromatic amino acid decarboxylase (AADC). We confirmed an interaction between alpha-synuclein and AADC in striatum. We then sought to determine whether wild-type or A53T mutant alpha-synuclein might have affected AADC activity in dopaminergic cells. Using HPLC with electrochemical detection, we measured dopamine and related catechols after L-DOPA treatments to bypass the TH step. We discovered that while alpha-synuclein did not reduce AADC protein levels, it significantly reduced AADC activity and phosphorylation in our cells. These novel findings further support a role for alpha-synuclein in dopamine homeostasis and may explain, at least in part, the selective vulnerability of dopamine neurons that occurs in PD.  相似文献   

17.
To characterize the formation of the dopaminergic system in the developing zebrafish CNS, we cloned cDNAs encoding tyrosine hydroxylase (th), an enzyme in dopamine synthesis, and the dopamine transporter (dat), a membrane transport protein which terminates dopamine action by re-uptake. Dopaminergic neurons are first detected between 18 and 19 h post-fertilization in a cluster of cells in the ventral diencephalon. Subsequently, th and dat detection identifies dopaminergic neurons in the olfactory bulb, the pretectum, the retina and the locus coeruleus. Neurons expressing th but not dat are adrenergic or noradrenergic, and are found in the locus coeruleus, the medulla, the likely analog of the carotid body, and precursors of the enteric and sympathetic nervous system.  相似文献   

18.
The study has been carried out to verify the authors’ hypothesis that degeneration of dopaminergic (DA-ergic) neurons of the hypothalamic tuberoinfundibular system and concomitant development of hyperprolactinemia are accompanied by involvement of compensatory synthesis of dopamine (DA) by non-dopaminergic neurons expressing single complementary enzymes of synthesis of this neurotransmitter. Degeneration of DA-ergic neurons was produced by a stereotaxic injection into the brain lateral ventricles of 6-hydroxydopamine (6-HDA)—a specific neurotoxin of DA-ergic neurons. 14 and 45 days after the toxin administration there were determined concentration of prolactine in peripheral blood by methods of immunoenzyme and radioimmunological analyses as well as the DA amount in the arcuate nucleus by the method of highly efficient liquid chromatography with electrochemical detection. In a part of the animals, sections were prepared from the mediobasal hypothalamus (arcuate nucleus and medial eminence) and perfused with Krebs—Ringer medium; then the DA concentration was determined in the sections and in the incubation medium. 14 days after the neurotoxin administration there were revealed an increase of blood prolactine concentration and a decrease of DA concentration in the arcuate nucleus in vivo as well a decrease of the total DA amount in the sections and incubation medium in experiments in vitro. 45 days after the neurotoxin administration, all the above parameters returned to the normal level. Thus, the obtained data indicate that the hyperlactinemia and DA deficit appearing during degeneration of the arcuate nucleus DA-ergic neurons seem to be compensated due to an enhancement of DA synthesis by non-dopaminergic monoenzyme neurons of arcuate nucleus.  相似文献   

19.
Effects of Light on Dopamine Metabolism in the Chick Retina   总被引:5,自引:4,他引:1  
The effect of prolonged exposure to light on the activity of dopaminergic neurons and dopamine (DA) metabolism of chick retinae was investigated. alpha-Fluoromethyldopa, a potent and specific irreversible inactivator of aromatic amino acid decarboxylase, was used to assess DA turnover after inhibition of synthesis, and also to assess in vivo tyrosine hydroxylase activity by dihydroxyphenylalanine accumulation. After 48 h of light exposure, retinal DNA in 12-day-old chicks was about 30% higher (p less than 0.005) whereas dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were elevated two to three times (p less than 0.005) the level of controls kept in the dark for the same period. DA turnover was about twofold faster in the light (t 1/2 = 31 min) than in the dark (t 1/2 = 65 min). Tyrosine hydroxylase, assayed in vitro with saturating levels of cofactor and substrate, increased by about 50% after light exposure. The apparent tyrosine hydroxylase activity in vivo was approximately sixfold higher in the light than the dark. These results are interpreted and discussed in terms of the regulation of DA synthesis, and the use of DOPAC and HVA as indices of DA function in the retina.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号