首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

2.
The effect of the nucleoside analog 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine) on herpes simplex virus type 1 DNA synthesis was examined. Acycloguanosine inhibited herpesvirus DNA synthesis in virus-infected cells. The synthesis of host cell DNA was only partially inhibited in actively growing cells at acycloguanosine concentrations several hundred-fold greater than the 50% effective dose for herpes simplex virus type 1. Studies using partially purified enzymes revealed that the triphosphate of this compound inhibited the virus-induced DNA polymerases (DNA nucleotidyltransferases) to a greater degree than the DNA polymerase of the host cell, that the inhibition was dependent upon the base composition of the template, and that the triphosphate was a better substrate for the virus-induced polymerases than for the alpha cellular DNA polymerases.  相似文献   

3.
Macromolecular Content of Inclusions Produced by a Canine Adenovirus   总被引:3,自引:1,他引:2  
Early inclusions induced by a canine adenovirus in a canine cell line, appearing before the formation of infectious virus particles, were purified by differential centrifugation in sucrose followed by CsCl density gradient centrifugation. Chemical analysis of these inclusions revealed that they contained deoxyribonucleic acid (DNA), ribonucleic acid, and protein. On the basis of density gradient centrifugation, the DNA extracted from the inclusions was found to be viral DNA. Electron microscope autoradiography showed that these inclusions were the sites of DNA synthesis. In addition, association of DNA polymerase activity with the inclusions was detected by incorporation of radioactivity from (3)H-thymidine triphosphate into a DNA product. The in vitro product of the enzyme had a density equal to that of viral DNA rather than host DNA. The level of DNA polymerase activity in exponentially growing infected and uninfected whole cells was similar, but in cells in stationary phase the enzyme activity of infected cells was twice that in noninfected cells. Furthermore, nuclei isolated from infected cells showed a fourfold increase in DNA polymerase activity over the noninfected cells.  相似文献   

4.
The triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine were examined for their inhibitory effect on highly purified cellular DNA polymerase alpha and human cytomegalovirus (Towne strain)-induced DNA polymerase. These two nucleoside triphosphates competitively inhibited the incorporation of dGMP into DNA catalyzed by the DNA polymerases. The virus-induced DNA polymerase had greater binding affinity for the triphosphate of 9-(2-hydroxyethoxymethyl)guanine (Ki, 8 nM) than for the triphosphate of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (Ki, 22 nM), although the nucleoside of the latter compound was strikingly more effective against human cytomegalovirus replication in cell cultures than the nucleoside of the former. The Ki values of these two nucleoside triphosphates for alpha polymerase were 96 and 146 nM, respectively, and were 7- to 12-fold higher than those for the virus-induced enzyme. These data indicated that virus-induced DNA polymerase was more sensitive to inhibition by these two nucleoside triphosphates than was the cellular alpha enzyme.  相似文献   

5.
6.
Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.  相似文献   

7.
8.
We have compared the relative merits of several procedures for the isolation of RNA-directed DNA polymerase (EC 2.7.7.7.) from cells using a reconsituted model system consisting of a mixture of woolly monkey (simian) sarcoma virus and a cultured human lymphoblastoid cell line, NC-37. When the cell-virus mixture was gently disrupted and fractionated by differential centrifugation, most of the added polymerase was recovered associated with a particulate fraction obtained from the post-mitochondrial supernatant. Purification of the polymerase was best achieved starting from this fraction. The particulate fraction itself can be purified by gel filtration through a Sepharose 2 B column. This procedure did not significantly alter the composition of viral and cellular DNA polymerases. Whereas as little as 7.5 - 10(5) viral particles were sufficient for the detection of RNA-directed DNA polymerase activity, a minimum of about 10(11) particles were necessary for the isolation and unequivocal characterization of the enzyme from the cell-virus mixture by subcellular fractionation and chromatographic separation from cellular DNA polymerases. Purified RNA-directed DNA polymerase had the same primer-template characteristics, sedimentation properties, and immunological cross reactivity as the enzyme purified from density gradient-banded virions of simian sarcoma virus. Methods involving total extraction of the cell-virus mixture either by repeated freezing and thawing followed by detergent treatment or by Dounce homogenization and treatment with high salt and detergent failed to provide RNA-directed DNA polymerase free of cellular DNA polymerases. Because of this, low levels of cellular RNA-directed DNA polymerase may be missed when these approaches are used.  相似文献   

9.
We have examined the kinetics of incorporation of acyclovir triphosphate by the herpes simplex virus-1 DNA polymerase holoenzyme (Pol-UL42) and the human mitochondrial DNA polymerase using transient kinetic methods. For each enzyme, we compared the kinetic parameters for acyclovir to those governing incorporation of dGTP. The favorable ground state dissociation constant (6 microM) and rate of polymerization (10 s(-1)) afford efficient incorporation of acyclovir triphosphate by the Pol-UL42 enzyme. A discrimination factor of approximately 50 favors dGTP over acyclovir triphosphate, mostly due to a faster maximum rate of dGTP incorporation. Once incorporated, acyclovir is removed with a half-life of approximately 1 h in the presence of a normal concentration of deoxynucleoside triphosphates, leading to a high toxicity index (16,000) toward viral replication. To assess the potential for toxicity toward the host we examined the incorporation and removal of acyclovir triphosphate by the human mitochondrial DNA polymerase. These results suggest moderate inhibition of mitochondrial DNA replication defining a toxicity index of 380. This value is much higher than the value of 1.5 determined for tenofovir, another acyclic nucleoside analog. The enzymatic therapeutic index is only 42 in favoring inhibition of the viral polymerase over polymerase gamma, whereas that for tenofovir is greater than 1,200. Mitochondrial toxicity is relatively low because acyclovir is activated only in infected cells by the promiscuous viral thymidine kinase and otherwise, mitochondrial toxicity would accumulate during long term treatment.  相似文献   

10.
Adenovirus DNA synthesis in vitro in an isolated complex.   总被引:4,自引:2,他引:2       下载免费PDF全文
DNA-protein complexes isolated from adenovirus-infected cells by a modification of the M-band technique were used as an in vitro system for the study of adenovirus DNA replication. The synthesis in vitro was semiconservative, inhibited by N-ethylmaleimide, and stimulated by ATP. Studies on DNA-negative mutants of adenovirus showed that the DNA synthesis in vitro represents a continuation of adenovirus DNA replication in vivo. DNA synthesis in vitro was inhibited 38% by 20 microgram of phosphonoacetic acid per ml, which is several-fold higher than the inhibition obtained with purified DNA polymerase beta or gamma, but was similar to the degree of inhibition of DNA polymerase alpha. DNA synthesis in complexes from uninfected cells was much less sensitive to inhibition by phosphonoacetic acid. In addition, complexes from infected cells contained a greater proportion of the alpha-polymerase than complexes from uninfected cells, suggesting that an association of alpha-polymerase with the replication complex may be occurring during adenovirus infection, with subsequent utilization of the alpha-polymerase for viral DNA synthesis.  相似文献   

11.
The Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene/ganciclovir (GCV) approach has been used for the treatment of a variety of cancers. The purpose of the present study was to evaluate the cytotoxic effect of ganciclovir in oral squamous cancer cells, previously transfected with HSV-tk gene delivered by transferrin-associated complexes (Tf-lipoplexes), as well as to investigate the mechanisms involved in the bystander effect and in the process of cell death. The delivery of HSV-tk gene to the oral cancer cells, HSC-3 and SCC-7, mediated by Tf-lipoplexes followed by ganciclovir treatment resulted in essentially 100% cytotoxicity, the observed toxic effect being dependent both on GCV dose and incubation time. Cell death was shown to occur mainly by an apoptotic process. Different experimental approaches demonstrated that the observed cytotoxicity was mainly due to diffusion of the toxic agent into neighbouring, non-transfected cells, via gap junctions. Preliminary in vivo studies in a murine model for oral squamous cell carcinoma have shown a significant inhibition of tumor growth upon injection of Tf-lipoplexes carrying HSV-tk followed by intraperitonal injection of GCV, as compared to controls.  相似文献   

12.
Productive infection of WI-38 cells with human cytomegalovirus (HCMV) induced the increase in the activity of DNA polymerases as well as the synthesis of viral and cellular DNA. Sedimentation analyses in sucrose gradients of high ionic strength showed that the HCMV infection caused marked increase in the activity of alpha-type polymerases (resolved into alpha1, 8 S, and alpha 2, 6 S, in the present experiments), while the infection little affected the level of beta-type polymerase (about 3.5 S) activity in both the nuclei and cytoplasm. Such increase in alpha-type polymerases was also observed when DNA synthesis in WI-38 cells was enhanced by SV40 infection or by an increased concentration of serum in medium. Phosphonacetate, which selectively blocked the synthesis of HCMV DNA, did not significantly affect the HCMV-mediated induction of DNA polymerases. However, phosphonoacetate added in the reaction mixture for DNA polymerase assay inhibited the activity of the HCMV-induced polyperase alpha, but not of the polymerases alpha2 and beta. These results support the idea that alpha-type polymerases are involved in the replicative synthesis of cellular and viral DNA.  相似文献   

13.
14.
INTRODUCTI0NHepatocellularcarcinoma(HCC)is0ne0fthem0stc0mm0nhumanmalignancies,causinganestimatedl,250,OOOdeatht0llperyearworldwide[1].Thep0orprognosisencounteredintreatment0fsuchcarcinomaismainlycausedbylatediagn0sisandinsufficiency0feffectivestrategies,especiallyforadvanced-stagedpatients.However,recentknowledge0fpathogenesisofHCCatm0lecularlevelprovidesanalternativeappr0achwhenc0nsideringgenetherapyastreatmelltf0rHCC.Am0ngthevari0usgenetherapystrategiesincancer)itwaJsrep0rtedthatth…  相似文献   

15.
The Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene/ganciclovir (GCV) approach has been used for the treatment of a variety of cancers. The purpose of the present study was to evaluate the cytotoxic effect of ganciclovir in oral squamous cancer cells, previously transfected with HSV-tk gene delivered by transferrin-associated complexes (Tf-lipoplexes), as well as to investigate the mechanisms involved in the bystander effect and in the process of cell death. The delivery of HSV-tk gene to the oral cancer cells, HSC-3 and SCC-7, mediated by Tf-lipoplexes followed by ganciclovir treatment resulted in essentially 100% cytotoxicity, the observed toxic effect being dependent both on GCV dose and incubation time. Cell death was shown to occur mainly by an apoptotic process. Different experimental approaches demonstrated that the observed cytotoxicity was mainly due to diffusion of the toxic agent into neighbouring, non-transfected cells, via gap junctions. Preliminary in vivo studies in a murine model for oral squamous cell carcinoma have shown a significant inhibition of tumor growth upon injection of Tf-lipoplexes carrying HSV-tk followed by intraperitonal injection of GCV, as compared to controls.  相似文献   

16.
We have examined four of the nondefective parvoviruses for an associated DNA polymerase. Virions were purified from neuraminidase-treated infected-cell lysates by isopycnic centrifugation in CsCl or from infected cell material by CaCl(2) precipitation and centrifugation through sucrose into CsCl. Preparations of bovine parvovirus or Kilham rat virus obtained by the former procedure contained DNA polymerase activity but were not free of contaminating cellular proteins. The latter method produced viral preparations free of contaminating cellular proteins, and no DNA polymerase activity was detected in light infectious particles of H-1, LuIII, bovine parvovirus, or Kilham rat virus. Examination of levels of each cellular DNA polymerase in these preparations from each step of both purification procedures revealed that DNA polymerase beta had a greater tendency to copurify with bovine parvovirus and Kilham rat virus than did DNA polymerases alpha or gamma. Disruption of infectious virions obtained by the second purification method with detergents and sonic treatment did not result in the detection of a DNA polymerase activity. The biological activity and purity of each of the four different viruses obtained by the latter procedure were determined by hemagglutination and infectivity assays, polyacrylamide gel electrophoresis, and electron microscopy. In each case, the virions banding at a density of 1.39 to 1.41 g/cm(2) in CsCl were infectious and contained only the virion structural proteins. DNA polymerase activity was not detected in any of these preparations, and we have concluded that a virion-associated DNA polymerase is not required for productive infection with the nondefective parvoviruses.  相似文献   

17.
The ability of herpes simplex virus type 1 (HSV-1) DNA polymerase, HeLa polymerase alpha, and HeLa polymerase beta to utilize several dGTP analogues has been investigated using a defined synthetic template primer. The relative efficiencies of the triphosphates of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir triphosphate, ACVTP), 9-[(1,3-dihydroxy-2-propoxy)methyl] guanine (ganciclovir triphosphate, DHPGTP), and 2',3'-dideoxyguanosine (ddGTP) as substrates for the three polymerases were: HSV-1 polymerase, dGTP greater than ACVTP approximately equal to DHPGTP greater than ddGTP; polymerase alpha, dGTP greater than ACVTP approximately equal to DHPGTP much greater than ddGTP; polymerase beta, ddGTP greater than dGTP much greater than ACVTP approximately equal to DHPGTP. The potent inhibition of HSV-1 polymerase by ACVTP has been shown previously to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3' end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism was shown here to be a general mechanism for inhibition of polymerases by the obligate chain terminators, ACVTP and ddGTP. The ACVTP-induced inhibition was 30-fold more potent with HSV-1 polymerase than with polymerase alpha. This difference may contribute to the antiviral selectivity of this nucleotide analogue. The effect of ganciclovir monophosphate incorporation (a nonobligate chain terminator) on subsequent primer extension was also evaluated. With HSV-1 polymerase and polymerase alpha, although there was a considerable reduction in the efficiency of utilization of the 3'-DHPGMP-terminal primer, contrasting kinetic behavior was observed. With HSV-1 polymerase, insertion of DHPGTP resulted in a significant reduction in Vmax for subsequent nucleotide incorporations. In contrast, with polymerase alpha, a relatively small decrease in Vmax was accompanied by increased Km values for subsequent nucleotide incorporations.  相似文献   

18.
Previous studies of herpesvirus infections have indicated that a virus-specified thymidine kinase is required for the initial phosphorylation of acyclovir [acycloguanosine or 9-(2-hydroxyethoxymethyl)guanine] in the formation of acycloguanosine triphosphate. The latter compound accumulates in infected cells and competitively inhibits the viral DNA polymerase. We found that mouse cytomegalovirus, which does not express a thymidine kinase, was sensitive to the antiviral effects of acyclovir at a 50% inhibitory dose of approximately 0.23 microM. Acyclovir was equally effective against mouse cytomegalovirus in normal 3T3 cells and in 3T3 cells deficient in cellular thymidine kinase. Furthermore, the activity of acyclovir could not be reversed by excess thymidine, which easily reversed the antiviral activity of acyclovir against herpes simplex virus. Using a high-pressure liquid chromatography technique that easily detected acycloguanosine triphosphate in cells infected with herpes simplex virus, we could not detect acycloguanosine triphosphate in mouse cytomegalovirus-infected cells. These experiments demonstrated that the activity of acyclovir against mouse cytomegalovirus is not dependent on a thymidine phosphorylation pathway. Additional experiments are underway to determine whether acycloguanosine triphosphate is produced by another pathway in concentrations sufficient to inhibit mouse cytomegalovirus DNA polymerase.  相似文献   

19.
In the present study, to achieve more selective and efficient therapeutic gene expression in hepatoma cells, we compared the therapeutic efficacies of the retroviral vectors expressing the herpes simplex virus thymidine kinase (HSV-tk) gene by the alpha-fetoprotein (AFP) enhancer/promoter in the forward (LNAFE0.3TK) and reverse (LN[AFE0.3TK]R) orientation to the vector long terminal repeats. By Northern blotting, the level of the HSV-tk mRNA in LN[AFE0.3TK]R-infected HepG2 human hepatoma cells was much higher than that in LNAFE0.3TK-infected cells. Consistent with this, LN[AFE0.3TK]R infection into HepG2 cells caused a greater cytotoxicity by ganciclovir exposure together with a stronger bystander effect than LNAFE0.3TK infection. In an animal model, intratumorous injection of LN[AFE0.3TK]R with ganciclovir treatment resulted in pronounced growth inhibition of HepG2 tumor. Thus, the reversely oriented therapeutic gene expression under the control of AFP enhancer/promoter is a possible candidate for the retrovirus-mediated gene therapy for hepatocellular carcinoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号